In situ temperature measurement in the pressure chamber of diamond anvil cell.

Rev Sci Instrum

State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China.

Published: August 2023

The measurements of temperature directly influence the reasonability of experiments at high pressure and high temperature. In this article, we proposed a new integration design, the built-in thermocouple, for in situ temperature measurements in high-pressure-high-temperature experiments by fusing the characteristics of thermocouples and diamond anvil cells together. By integrating an S-type thermocouple inside the gasket of a diamond anvil cell, we successfully measured the temperature of the sample straight inside the pressure chamber at high pressure and high temperature. The setup underwent multiple experimental tests using internal and external heating techniques, the results of which revealed its capability to directly characterize the temperature of the sample with comparable accuracy and reliability to that of the typical external thermocouple setup. The proposed setup has also resolved the issue of the discrepancy of temperatures inside and outside the sample chamber and enormously expedited the temperature measurements by significantly reducing the response time of the thermocouple. In conclusion, the built-in thermocouple is a promising approach toward high-efficiency, in situ temperature measurements under extreme conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0137583DOI Listing

Publication Analysis

Top Keywords

situ temperature
12
diamond anvil
12
temperature measurements
12
pressure chamber
8
anvil cell
8
temperature
8
high pressure
8
pressure high
8
high temperature
8
built-in thermocouple
8

Similar Publications

We here explore confinement-induced assembly of whey protein nanofibrils (PNFs) into microscale fibers using microfocused synchrotron X-ray scattering. Solvent evaporation aligns the PNFs into anisotropic fibers, and the process is followed in situ by scattering experiments within a droplet of PNF dispersion. We find an optimal temperature at which the order parameter of the protein fiber is maximized, suggesting that the degree of order results from a balance between the time scales of the forced alignment and the rotational diffusion of the fibrils.

View Article and Find Full Text PDF

The dynamic response of heterogeneous catalytic materials to their environment opens a wide variety of possible surface states which may have increased catalytic activity. In this work, we find that it is possible to generate a surface state with increased catalytic activity over metallic 2nm Pt nanoparticles by performing a thermal treatment of the CO*-covered Pt catalyst. This state is characterised by its ability to oxidise CO to CO2 at room temperature.

View Article and Find Full Text PDF

Low-temperature synthesis is crucial for advancing sustainable manufacturing and accessing novel metastable phases. Metal hydrides have shown great potential in facilitating the reduction of oxides at low temperatures, yet the underlying mechanism─whether driven by H, H, or atomic H─remains unclear. In this study, we employ electrical transport measurements and first-principles calculations to investigate the CaH-driven reduction kinetics in epitaxial α-FeO thin films.

View Article and Find Full Text PDF

Zero-Waste Polyanion and Prussian Blue Composites toward Practical Sodium-Ion Batteries.

Adv Mater

January 2025

Institute for Carbon Neutralization Technology, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China.

Closed-loop transformation of raw materials into high-value-added products is highly desired for the sustainable development of the society but is seldom achieved. Here, a low-cost, solvent-free and "zero-waste" mechanochemical protocol is reported for the large-scale preparation of cathode materials for sodium-ion batteries (SIBs). This process ensures full utilization of raw materials, effectively reduces water consumption, and simplifies the operating process.

View Article and Find Full Text PDF

The combination of an ordinary s-type superconductor with three-dimensional topological insulators creates a promising platform for fault-tolerant topological quantum computing circuits based on Majorana braiding. The backbone of the braiding mechanism are three-terminal Josephson junctions. It is crucial to understand the transport in these devices for further use in quantum computing applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!