This study proposed a simple method to evaluate the spectral reflectance of the inner wall of a vacuum chamber. A method for calculating spectral emission coefficients by taking the spectral reflectance of the chamber inner wall into account was proposed. Furthermore, plasma diagnosis based on optical emission spectroscopic (OES) measurement was performed so as to obtain radial dependence of electron temperature Te and density Ne of a radio frequency inductively coupled Argon (Ar) plasma by applying a collisional-radiative model to radially resolved emission spectra of the Ar plasma assuming axial symmetry. In addition, Langmuir probe measurement and electromagnetic simulation were performed and compared with the OES-based plasma diagnosis results. The spectral radiance compensation improved the diagnostic result by 0.6% and 3.1% for Te and Ne, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0138912DOI Listing

Publication Analysis

Top Keywords

spectral reflectance
12
radial dependence
8
inductively coupled
8
based optical
8
optical emission
8
emission spectroscopic
8
inner wall
8
plasma diagnosis
8
plasma
5
spectral
5

Similar Publications

Background/purpose: Dyslipidemia, a hallmark of metabolic syndrome (MetS), contributes to atherosclerotic and cardiometabolic disorders. Due to days-long analysis, current clinical procedures for cardiotoxic blood lipid monitoring are unmet. This study used AI-assisted attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy to identify MetS and precisely quantify multiple blood lipid levels with a blood sample of 0.

View Article and Find Full Text PDF

Planar 1D photonic crystals (1DPhCs), owing to their photonic bandgaps (PBGs) formed by unique structural interference, are widely utilized in light protection applications. Multifunctional coatings that integrate various light management functions are highly desired. In this study, we present the fabrication of dual-PBG 1DPhCs with high reflectance in both the blue and near-infrared (NIR) regions.

View Article and Find Full Text PDF

Nanoparticles-Based Optical Chemosensors for Lead Acetate Sensing in Water: ZnO, ZnCeO, and ZnNdO.

J Fluoresc

January 2025

Materials Science Lab (1), Physics Department, Faculty of Science, Cairo University, Giza, Egypt.

This study reports the synthesis, characterization, and optical properties of ZnO, ZnCeO, and ZnNdO nanoparticles and their interactions with lead acetate solutions. X-ray diffraction (XRD) confirmed that the nanoparticles were synthesized in a single-phase hexagonal structure, with crystallite sizes of 12.48 nm, 50.

View Article and Find Full Text PDF

Off-axis integrated cavity output spectroscopy (OA-ICOS) allows the laser to be reflected multiple times inside the cavity, increasing the effective absorption path length and thus improving sensitivity. However, OA-ICOS systems are affected by various types of noise, and traditional filtering methods offer low processing efficiency and perform limited feature extraction. Deep learning models enable us to extract important features from large-scale, complex spectral data and analyze them efficiently and accurately.

View Article and Find Full Text PDF

Effective spatio-temporal measurements of water surface elevation (water waves) in laboratory experiments are essential for scientific and engineering research. Existing techniques are often cumbersome, computationally heavy and generally suffer from limited wavenumber/frequency response. To address these challenges a novel method was developed, using polarization filter equipped camera as the main sensor and Machine Learning (ML) algorithms for data processing [1,2].

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!