SPLASH: A statistical, reference-free genomic algorithm unifies biological discovery.

Cell

Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA; Department of Biochemistry, Stanford University, Stanford, CA 94305, USA; Department of Statistics (by courtesy), Stanford University, Stanford, CA 94305, USA; Department of Biology (by courtesy), Stanford University, Stanford, CA 94305, USA. Electronic address:

Published: December 2023

Today's genomics workflows typically require alignment to a reference sequence, which limits discovery. We introduce a unifying paradigm, SPLASH (Statistically Primary aLignment Agnostic Sequence Homing), which directly analyzes raw sequencing data, using a statistical test to detect a signature of regulation: sample-specific sequence variation. SPLASH detects many types of variation and can be efficiently run at scale. We show that SPLASH identifies complex mutation patterns in SARS-CoV-2, discovers regulated RNA isoforms at the single-cell level, detects the vast sequence diversity of adaptive immune receptors, and uncovers biology in non-model organisms undocumented in their reference genomes: geographic and seasonal variation and diatom association in eelgrass, an oceanic plant impacted by climate change, and tissue-specific transcripts in octopus. SPLASH is a unifying approach to genomic analysis that enables expansive discovery without metadata or references.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10861363PMC
http://dx.doi.org/10.1016/j.cell.2023.10.028DOI Listing

Publication Analysis

Top Keywords

splash
5
splash statistical
4
statistical reference-free
4
reference-free genomic
4
genomic algorithm
4
algorithm unifies
4
unifies biological
4
biological discovery
4
discovery today's
4
today's genomics
4

Similar Publications

The development of thickened fermented rice milk formulation for people with dysphagia: A view of multiple in vitro simulation methods.

Food Res Int

February 2025

College of Food Science, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Chongqing 400715 China. Electronic address:

Based on the huge blank of thickened fluid staple food for people with dysphagia, multiple in vitro simulations were utilized to develop the thickened fermented rice milk. Here, the effect of amylase content, hydrolysis time and thickener content were considered. The rheological study and Cambridge throat evaluation revealed that hydrolysis could significantly reduce the viscosity and yield stress of fermented rice milk, accompanied by the decreased swallowing residue.

View Article and Find Full Text PDF

This work investigates the dynamic behavior of droplets on superhydrophobic cylindrical surfaces with a convex ridge through experimental analysis, focusing on the effects of varying the diameter ratio ( = ) and the ridge width ratio (δ = ). Impact morphology diagrams are established to reveal the morphology transition of the droplet as a function of and δ. The splash threshold is obtained, and the energy loss during the collision process is analyzed by examining the recovery coefficient and the splitting angle, with the splitting threshold found to be dependent on δ.

View Article and Find Full Text PDF

Introduction: SPLASH (NCT04647526) is a multicenter phase III trial evaluating the efficacy and safety of [Lu]Lu-PNT2002 radioligand therapy in metastatic castration-resistant prostate cancer (mCRPC). This study leveraged a lead-in phase to assess tissue dosimetry and evaluate preliminary safety and efficacy, prior to expansion into a randomized phase. Here we report those results.

View Article and Find Full Text PDF

Objectives: This systematic review aims to evaluate the use of Indocyanine Green Lymphography (ICGL) for the investigation of the lymphatics in the lower limbs of primary lymphoedema patients.

Methods: MEDLINE and EMBASE articles from 01/01/2000 to 01/09/2023 were searched for. A total of 11 studies were included in the review after a two-stage screening process.

View Article and Find Full Text PDF

Paclitaxel (PTX) is a commonly used chemotherapeutic drug, however, one of its major adverse effects is chronic neuropathic pain, with the incidence being higher in women than in men. The neurobiological mechanisms behind this sex difference are still largely unclear, and the endocannabinoid system, which exhibits sexual dimorphism and plays a key role in pain regulation, is a promising area for further studies. The present study aimed to characterise pain-, cognition-, anxiety-, and depression-related behaviours in male and female rats following PTX administration, and associated alterations in the endocannabinoid system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!