The climatic changes have great threats to sustainable agriculture and require efforts to ensure global food and nutritional security. In this regard, the plant strategic responses, including the induction of plant hormones/plant growth regulators (PGRs), play a substantial role in boosting plant immunity against environmental stress-induced adversities. In addition, secondary metabolites (SMs) have emerged as potential 'stress alleviators' that help plants to adapt against environmental stressors imposing detrimental impacts on plant health and survival. The introduction of SMs in plant biology has shed light on their beneficial effects in mitigating environmental crises. This review explores SMs-mediated plant defense responses and highlights the crosstalk between PGRs and SMs under diverse environmental stressors. In addition, genetic engineering approaches are discussed as a potential revenue to enhance plant hormone-mediated SM production in response to environmental cues. Thus, the present review aims to emphasize the significance of SMs implications with PGRs association and genetic approachability, which could aid in shaping the future strategies that favor agro-ecosystem compatibility under unpredictable environmental conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plaphy.2023.108238 | DOI Listing |
J Agric Food Chem
January 2025
UA MBG-UVIGO, Misión Biológica de Galicia (CSIC), Pazo de Salcedo, Pontevedra 36143, España.
Hydroxycinnamates, like ferulate (FA) and -coumarate (CA), are important components of maize cell walls, which influence pest resistance, ruminal digestibility, and biofuel production. Increasing their concentration has been linked to increased pest resistance, but also may lead to a decrease in nutritional value or bioethanol production efficiency. Therefore, improving forage quality or biofuel production without compromising plant resistance and a thorough understanding of the biosynthesis and deposition of these compounds is necessary, especially in stover, which is the feedstock for second-generation biofuel production and determines animal forage quality.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
January 2025
School of Life Science, Nanyang Normal University, Nanyang 473061, PR China.
Two novel yeast strains, NYNU 236247 and NYNU 23523, were isolated from the leaves of Hance, collected in the Tianchi Mountain National Forest Park, Henan Province, central China. Phylogenetic analysis of the D1/D2 domain of the large subunit rRNA gene and the internal transcribed spacer (ITS) region revealed the closest relatives of the strains are three described species: , and . The novel species differed from the type strains of these three species by 12 to 22 nucleotide substitutions and 1 gap (~2.
View Article and Find Full Text PDFISME J
January 2025
Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27607, United States.
Long-term climate history can influence rates of soil carbon cycling but the microbial traits underlying these legacy effects are not well understood. Legacies may result if historical climate differences alter the traits of soil microbial communities, particularly those associated with carbon cycling and stress tolerance. However, it is also possible that contemporary conditions can overcome the influence of historical climate, particularly under extreme conditions.
View Article and Find Full Text PDFToxicol Sci
January 2025
Department of Pharmacology, University of the Free State, Bloemfontein, 9300, South Africa.
Medicinal plants are products from natural sources that have found relevance in medicine for several decades. They are rich in bioactive compounds; thus, they are widely used to treat different ailments globally. Medicinal plants have provided hope for the health care industry as most are used to synthesize modern medicines currently used in the treatment of various diseases.
View Article and Find Full Text PDFCRISPR J
January 2025
Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai, China.
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 system has revolutionized targeted mutagenesis, but screening for mutations in large sample pools can be time-consuming and costly. We present an efficient and cost-effective polymerase chain reaction (PCR)-based strategy for identifying edited mutants in the T generation. Unlike previous methods, our approach addresses the challenges of large progeny populations by using T generation sequencing results for genotype prediction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!