AI Article Synopsis

  • Clear cell renal cell carcinoma (ccRCC) is a common type of kidney cancer that can be influenced by certain RNA molecules called long non-coding RNAs (lncRNAs).
  • The study looked at a specific lncRNA named HIF1A-AS2 to see how it affects ccRCC cells by promoting their growth and influencing other important proteins.
  • The findings suggest that targeting HIF1A-AS2 could lead to new treatments for ccRCC by stopping the growth of cancer cells.

Article Abstract

Background: The most common urologic tumor in humans with the highest incidence rate is clear cell renal cell carcinoma (ccRCC). Long non-coding RNAs (lncRNAs) act as regulatory factors in several tumors. Here, we studied ccRCC regulated by hypoxia-inducible factor 1α (HIF1α)-antisense RNA 2 (AS2) or HIF1A-AS2.

Methods: We performed wound-healing, transwell, and CCK-8 assays by decreasing or increasing the HIF1A-AS2 expression in RCC cell lines. Western blotting and qRT-PCR were used to identify the expression of downstream genes of the HIF1A-AS2 pathway. Gli1 and HIF1A-AS2 relationship was assessed using RIP and RNA pull-down assays. Lastly, transcriptome sequencing was performed on kidney cancer cells that had been knocked down to find possible regulatory mechanisms.

Results: Our results suggest that high expression of HIF1A-AS2 may promote RCC cell proliferation and Gli1 expression as a downstream factor. Furthermore, they have physical binding sites and together regulate HIF1α to encourage the development of ccRCC. HIF1A-AS2 lncRNA may offer a new molecular target for ccRCC treatment.

Conclusion: lncRNA HIF1A-AS2 affects ccRCC development by regulating HIF1a expression through Gli1.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.prp.2023.154984DOI Listing

Publication Analysis

Top Keywords

long non-coding
8
clear cell
8
cell renal
8
renal cell
8
cell carcinoma
8
rcc cell
8
expression downstream
8
hif1a-as2
7
expression
6
cell
6

Similar Publications

Dysregulation of long non-coding RNAs (lncRNAs) is implicated in the pathophysiology of ischemic stroke (IS). However, the molecular mechanism of the lncRNA SERPINB9P1 in IS remains unclear. Our study aimed to explore the role and molecular mechanism of the lncRNA SERPINB9P1 in IS.

View Article and Find Full Text PDF

Myocardial infarction (MI) is a highly challenging and fatal disease, with diverse challenges arising at different stages of its progression. As such, non-coding RNAs (ncRNAs), which can broadly regulate cell fate, and stem cells with multi-differentiation potential are emerging as novel therapeutic approaches for treating MI across its various stages. NcRNAs, including microRNAs (miRNAs) and long non-coding RNAs (LncRNAs), can directly participate in regulating intracellular signaling pathways, influence cardiac angiogenesis, and promote the repair of infarcted myocardium.

View Article and Find Full Text PDF

Breast cancer (BC) is one of the most prevalent forms of cancer globally, and has recently become the leading cause of cancer-related mortality in women. BC is a heterogeneous disease comprising various histopathological and molecular subtypes with differing levels of malignancy, and each patient has an individual prognosis. Etiology and pathogenesis are complex and involve a considerable number of genetic alterations and dozens of alterations in non-coding RNA expression.

View Article and Find Full Text PDF

RNA Structure: Past, Future, and Gene Therapy Applications.

Int J Mol Sci

December 2024

ACCESS Health International, 384 West Lane, Ridgefield, CT 06877, USA.

First believed to be a simple intermediary between the information encoded in deoxyribonucleic acid and that functionally displayed in proteins, ribonucleic acid (RNA) is now known to have many functions through its abundance and intricate, ubiquitous, diverse, and dynamic structure. About 70-90% of the human genome is transcribed into protein-coding and noncoding RNAs as main determinants along with regulatory sequences of cellular to populational biological diversity. From the nucleotide sequence or primary structure, through Watson-Crick pairing self-folding or secondary structure, to compaction via longer distance Watson-Crick and non-Watson-Crick interactions or tertiary structure, and interactions with RNA or other biopolymers or quaternary structure, or with metabolites and biomolecules or quinary structure, RNA structure plays a critical role in RNA's lifecycle from transcription to decay and many cellular processes.

View Article and Find Full Text PDF

Among the long non-coding RNAs that are currently recognized as important regulatory molecules influencing a plethora of processes in eukaryotic cells, circular RNAs (circRNAs) represent a distinct class of RNAs that are predominantly produced by back-splicing of pre-mRNA. The most studied regulatory mechanisms involving circRNAs are acting as miRNA sponges, forming R-loops with genomic DNA, and encoding functional proteins. In addition to circRNAs generated by back-splicing, two types of circRNAs capable of autonomous RNA-RNA replication and systemic transport have been described in plants: viroids, which are infectious RNAs that cause a number of plant diseases, and retrozymes, which are transcripts of retrotransposon genomic loci that are capable of circularization due to ribozymes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!