Titanium patient-specific (CAD/CAM) plates are frequently used in mandibular reconstruction. However, titanium is a very stiff, non-degradable material which also induces artifacts in the imaging. Although magnesium has been proposed as a potential material alternative, the biomechanical conditions in the reconstructed mandible under magnesium CAD/CAM plate fixation are unknown. This study aimed to evaluate the primary fixation stability and potential of magnesium CAD/CAM miniplates. The biomechanical environment in a one segmental mandibular reconstruction with fibula free flap induced by a combination of a short posterior titanium CAD/CAM reconstruction plate and two anterior CAD/CAM miniplates of titanium and/or magnesium was evaluated, using computer modeling approaches. Output parameters were the strains in the healing regions and the stresses in the plates. Mechanical strains increased locally under magnesium fixation. Two plate-protective constellations for magnesium plates were identified: (1) pairing one magnesium miniplate with a parallel titanium miniplate and (2) pairing anterior magnesium miniplates with a posterior titanium reconstruction plate. Due to their degradability and reduced stiffness in comparison to titanium, magnesium plates could be beneficial for bone healing. Magnesium miniplates can be paired with titanium plates to ensure a non-occurrence of plate failure.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2023.107817DOI Listing

Publication Analysis

Top Keywords

magnesium miniplates
12
mandibular reconstruction
12
magnesium
11
segmental mandibular
8
reconstruction fibula
8
fibula free
8
free flap
8
titanium
8
magnesium cad/cam
8
cad/cam miniplates
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!