Silica nanoparticles (SiNPs) are nanomaterials with widespread applications in drug delivery and disease diagnosis. Despite their utility, SiNPs can cause chronic kidney disease, hindering their clinical translation. The molecular mechanisms underlying SiNP-induced renal toxicity are complex and require further investigation. To address this challenge, we employed bioinformatics tools to predict the potential mechanisms underlying renal damage caused by SiNPs. We identified 1627 upregulated differentially expressed genes (DEGs) and 1334 downregulated DEGs. Functional enrichment analysis and protein-protein interaction network revealed that SiNP-induced renal damage is associated with apoptosis. Subsequently, we verified that SiNPs induced apoptosis in an in vitro model of NRK-52E cells via the unfolded protein response (UPR) in a dose-dependent manner. Furthermore, in an in vivo rat model, high-dose SiNP administration via tracheal drip caused hyalinization of the renal tubules, renal interstitial lymphocytic infiltration, and collagen fiber accumulation. Concurrently, we observed an increase in UPR-related protein levels at the onset of renal damage. Thus, our study confirmed that SiNPs induce apoptosis and renal damage through the UPR, adding to the theoretical understanding of SiNP-related kidney damage and offering a potential target for preventing and treating kidney injuries in SiNP clinical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiomed.2023.107816 | DOI Listing |
Angiotensin II (Ang II) is the most active peptide hormone produced by the renin-angiotensin system (RAS). Genetic deletion of genes that ultimately restrict Ang II formation has been shown to result in marked anemia in mice. In this study, adult mice with a genetic deletion of the RAS precursor protein angiotensinogen (Agt-KO) were used.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
METTL3, a key enzyme in N6-methyladenosine (m6A) modification, plays a crucial role in the progression of renal fibrosis, particularly in chronic active renal allograft rejection (CAR). This study explored the mechanisms by which METTL3 promotes renal allograft fibrosis, focusing on its role in the macrophage-to-myofibroblast transition (MMT). Using a comprehensive experimental approach, including TGF-β1-induced MMT cell models, METTL3 conditional knockout (METTL3 KO) mice, and renal biopsy samples from patients with CAR, the study investigates the involvement of METTL3/Smad3 axis in driving MMT and renal fibrosis during the episodes of CAR.
View Article and Find Full Text PDFEur J Trauma Emerg Surg
January 2025
Emergency Department, Habib bourguiba university hospital, Faculty of Medicine, Sfax University, Majida Boulila Avenue, Sfax, Tunisia.
Introduction: Electrical injuries (EIs) represent a significant clinical challenge due to their complex pathophysiology and variable presentation, ranging from minor burns to severe internal organ damage. Despite their prevalence in both; domestic and occupational settings, there remains a rareness of systematic guidelines and comprehensive literature to aid clinicians in effectively managing these injuries. Understanding these factors is crucial for developing protocols that can mitigate the risk of delayed complications, such as cardiac arrhythmias, in patients who initially appear stable.
View Article and Find Full Text PDFIr J Med Sci
January 2025
Faculty of Medicine, Department of Pediatric Surgery Division of Pediatric Urology, Eskisehir Osmangazi University, Eskişehir, Turkey.
Background: Hydronephrosis developing at the ureteropelvic junction due to obstruction poses clinical challenges as it has the potential to cause renal damage.
Aims: This study aims to evaluate how well machine learning models such, as XGBClassifier and Logistic Regression can be used to predict the need for treatment in patients, with hydronephrosis resulting from ureteropelvic junction obstruction.
Methods: Hydronephrosis was diagnosed in the medical records of patients from January 2015 to December 2020.
Front Immunol
January 2025
Laboratory of Immunohematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece.
Obesity is a rapidly growing health problem worldwide, affecting both adults and children and increasing the risk of chronic diseases such as type 2 diabetes, hypertension and cardiovascular disease (CVD). In addition, obesity is closely linked to chronic kidney disease (CKD) by either exacerbating diabetic complications or directly causing kidney damage. Obesity-related CKD is characterized by proteinuria, lipid accumulation, fibrosis and glomerulosclerosis, which can gradually impair kidney function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!