Background: In time-of-flight PET, image quality and accuracy can be enhanced by improving the annihilation photon pair coincidence time resolution, which is the variation in the arrival time difference between the two annihilation photons emitted from each positron decay in the patient. Recent studies suggest direct detection of ionization tracks and their resulting modulation of optical properties, instead of scintillation, can improve the CTR significantly, potentially down to less than 10 ps CTR. However, the arrival times of the 511 keV photons are not predictable, leading to challenges in the spatiotemporal localization characterization of the induced charge carriers in the detector crystal.
Purpose: To establish an optimized experimental setup for measuring ionization induced modulation of optical properties, it is critical to develop a versatile simulation algorithm that can handle multiple detector material properties and time-resolved charge carrier dynamics.
Methods: We expanded our previous algorithm and simulated ionization tracks, cascade time and induced charge carrier density over time in different materials. For designing a proof-of-concept experiment, we simulated ultrafast electrons and free-electron x-ray photons for timing characterization along with alpha and beta particles for higher spatial localization.
Results: With 3 MeV ultrafast electrons, by reducing detector crystal thickness, we can effectively reduce the ionization cascade time to 0.79 ps and deposited energy to 198.5 keV, which is on the order of the desired 511 keV energy. Alpha source simulations produced a cascade time of 2.45 ps and charge carrier density of 6.39 × 1020 cm . Compared to the previous results obtained from 511 keV photon-induced ionization track simulations, the cascade time displayed similar characteristics, while the charge density was found to be higher. These findings suggest that alpha sources have the potential to generate a stronger ionization-induced signal using the modulation of optical properties as the detection mechanism.
Conclusions: This work provides a guideline to understand, design and optimize an experimental platform that is highly sensitive and temporally precise enough to detect single 511 keV photon interactions with a goal to advance CTR for ToF-PET.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10922253 | PMC |
http://dx.doi.org/10.1002/mp.16855 | DOI Listing |
Anal Chem
January 2025
School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, P. R. China.
DNAzyme-based cascade networks are effective tools to achieve ultrasensitive detection of low-abundance miRNAs. However, their designs are complicated and costly, and the operation is time-consuming. Herein, a novel simple noncascade DNAzyme network is designed and its amplification effect is comparable to or even better than many cascading ones.
View Article and Find Full Text PDFMikrochim Acta
January 2025
College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
An innovative colorimetric sensing strategy was developed for the detection of glucose by the integration of glucose aptamer, glucose oxidase (GOx), and horseradish peroxidase (HRP), termed aptamer proximal enzyme cascade reactions (APECR). In the presence of glucose, aptamer binding enables GOx to catalyze glucose oxidation into HO efficiently. Subsequently, the adjacent HRP catalyzes the oxidation of the peroxidase substrate, 2,2'-biazobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), utilizing the generated HO, resulting in a distinct color change.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA.
Unlabelled: Group A (GAS) is a major human pathogen that causes several invasive diseases including necrotizing fasciitis. The host coagulation cascade initiates fibrin clots to sequester bacteria to prevent dissemination into deeper tissues. GAS, especially skin-tropic bacterial strains, utilize specific virulence factors, plasminogen binding M-protein (PAM) and streptokinase (SK), to manipulate hemostasis and activate plasminogen to cause fibrinolysis and fibrin clot escape.
View Article and Find Full Text PDFCell-type-specific activation of parvalbumin (PV)-expressing neurons in the external globus pallidus (GPe) through optogenetics has shown promise in facilitating long-lasting movement dysfunction recovery in mice with Parkinson's disease. However, its translational potential is hindered by adverse effects stemming from the invasive implantation of optical fibers into the brain. In this study, we have developed a non-invasive optogenetics approach, utilizing focused ultrasound-triggered mechanoluminescent nanotransducers to enable remote photon delivery deep in the brain for genetically targeted neuromodulation.
View Article and Find Full Text PDFLancet Reg Health West Pac
December 2024
Department of Paediatrics, Faculty of Medicine, Chulalongkorn University, Thailand.
The global strategy to #EndAIDS is underpinned by a call to end all inequities and to ensure no-one is left behind; but inequities continue, and people are still being left behind. Despite the advances seen in some populations and in some geographical areas, with ongoing high rates of HIV vertical transmission, ending HIV for pregnant and breastfeeding women and their children must be prioritised urgently. Focused on Asia and the Pacific, the region with the second largest number of people with HIV, in this viewpoint we highlight the heterogenous nature of global and regional success in eliminating vertical transmission of HIV.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!