A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Multiplexed Quantitative Proteomics Reveals Proteomic Alterations in Two Rodent Traumatic Brain Injury Models. | LitMetric

In many cases of traumatic brain injury (TBI), conspicuous abnormalities, such as scalp wounds and intracranial hemorrhages, abate over time. However, many unnoticeable symptoms, including cognitive, emotional, and behavioral dysfunction, often last from several weeks to years after trauma, even for mild injuries. Moreover, the cause of such persistence of symptoms has not been examined extensively. Recent studies have implicated the dysregulation of the molecular system in the injured brain, necessitating an in-depth analysis of the proteome and signaling pathways that mediate the consequences of TBI. Thus, in this study, the brain proteomes of two TBI models were examined by quantitative proteomics during the recovery period to determine the molecular mechanisms of TBI. Our results show that the proteomes in both TBI models undergo distinct changes. A bioinformatics analysis demonstrated robust activation and inhibition of signaling pathways and core proteins that mediate biological processes after brain injury. These findings can help determine the molecular mechanisms that underlie the persistent effects of TBI and identify novel targets for drug interventions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jproteome.3c00544DOI Listing

Publication Analysis

Top Keywords

brain injury
12
quantitative proteomics
8
traumatic brain
8
signaling pathways
8
proteomes tbi
8
tbi models
8
determine molecular
8
molecular mechanisms
8
tbi
6
brain
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!