A combination of protein binding, liver clearance, subcellular distribution and cell separation experiments was employed to investigate the influence of binding of cationic drugs to asialoorosomucoid (ASOR) on their hepatic uptake and intrahepatic distribution. Two quaternary ammonium drugs, d-tubocurarine and N-methyldeptropine, were selected because of their marked differences in hepatic processing and binding to ASOR. In spite of an increase in protein binding of 560% for d-tubocurarine and 380% for N-methyldeptropine, perfusate clearance of both drugs in isolated perfused rat livers was not influenced by addition of 75 mg of ASOR. Absence of coendocytosis was indicated by subcellular distribution studies revealing no extra enrichment of quaternary ammonium drugs in lysosomal fractions compared with control studies. Isolation of parenchymal and sinusoidal liver cells demonstrated d-tubocurarine to be present solely in hepatocytes; binding to ASOR did not affect the relative distribution in the various cell types. It is concluded that binding of cationic drugs to ASOR does not result in endocytosis of a drug-protein-receptor complex by the liver. This result rather suggests that dissociation of the organic cations from the asialoglycoprotein occurs within the liver before endocytosis of the glycoprotein.
Download full-text PDF |
Source |
---|
Proc Natl Acad Sci U S A
February 2025
Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China.
Carrier-free nanomedicines exhibited significant potential in elevating drug efficacy and safety for tumor management, yet their self assembly typically relied on chemical modifications of drugs or the incorporation of surfactants, thereby compromising the drug's inherent pharmacological activity. To address this challenge, we proposed a triethylamine (TEA)-mediated protonation-deprotonation strategy that enabled the adjustable-proportion self assembly of dual drugs without chemical modification, achieving nearly 100% drug loading capacity. Molecular dynamic simulations, supported by experiment evidence, elucidated the underlying self-assembly mechanism.
View Article and Find Full Text PDFACS Cent Sci
January 2025
The Second Affiliated Hospital of Zhejiang University School of Medicine, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China.
Genetic encoding of noncanonical amino acids (ncAAs) with desired functionalities is an invaluable tool for the study of biological processes and the development of therapeutic drugs. However, existing ncAA incorporation strategies are rather time-consuming and have relatively low success rates. Here, we develop a virtual ncAA screener based on the analysis and modeling of the chemical properties of all reported ncAA substrates to virtually determine the recognition potential of candidate ncAAs.
View Article and Find Full Text PDFOncol Res
January 2025
Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia.
Background: Hepatocellular carcinoma (HCC) is a health problem due to multi-drug resistance (MDR). Codelivery of multiple oncotherapy in one cargo as chimeric cancer therapy (CCT) is suggested as a solution for MDR. This study aims to engineer chitosan-coated nanostructure lipid carriers (NLCs) loaded with gefitinib (GF) and simvastatin (SV) as CCT for HCC.
View Article and Find Full Text PDFEur J Med Chem
January 2025
Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing, 100050, PR China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; Institute of Pharmaceutics, School of Pharmacy, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China. Electronic address:
De novo design of antimicrobial peptides is a pivotal strategy for developing new antibacterial agents, leveraging its rapid and efficient nature. (XXYY), where X represents cationic residues, Y denotes hydrophobic residues, and n varies from 2 to 4, is a classical α-helix template. Based on which, numerous antimicrobial peptides have been synthesized.
View Article and Find Full Text PDFJ Transl Med
January 2025
Medical School of Nanjing University, Nanjing, 210093, China.
Background: Clear cell renal cell carcinoma (ccRCC) has a high incidence rate and poor prognosis, and currently lacks effective therapies. Recently, peptide-based drugs have shown promise in cancer treatment. In this research, a new endogenous peptide called CBDP1 was discovered in ccRCC and its potential anti-cancer properties were examined.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!