Pancreatic cancer (PCa) is one of the most fatal human malignancies. The enhanced infiltration of stromal tissue into the PCa tumor microenvironment limits the identification of key tumor-specific transcription factors and epigenomic abnormalities in malignant epithelial cells. Integrated transcriptome and epigenetic multiomics analyses of the paired PCa organoids indicate that the basic helix-loop-helix transcription factor 40 (BHLHE40) is significantly upregulated in tumor samples. Increased chromatin accessibility at the promoter region and enhanced mTOR pathway activity contribute to the elevated expression of BHLHE40. Integrated analysis of chromatin immunoprecipitation-seq, RNA-seq, and high-throughput chromosome conformation capture data, together with chromosome conformation capture assays, indicate that BHLHE40 not only regulates sterol regulatory element-binding factor 1 (SREBF1) transcription as a classic transcription factor but also links the enhancer and promoter regions of SREBF1. It is found that the BHLHE40-SREBF1-stearoyl-CoA desaturase axis protects PCa cells from ferroptosis, resulting in the reduced accumulation of lipid peroxidation. Moreover, fatostatin, an SREBF1 inhibitor, significantly suppresses the growth of PCa tumors with high expressions of BHLHE40. This study highlights the important roles of BHLHE40-mediated lipid peroxidation in inducing ferroptosis in PCa cells and provides a novel mechanism underlying SREBF1 overexpression in PCa.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10870036PMC
http://dx.doi.org/10.1002/advs.202306298DOI Listing

Publication Analysis

Top Keywords

pancreatic cancer
8
transcription factor
8
chromosome conformation
8
conformation capture
8
pca cells
8
lipid peroxidation
8
pca
7
bhlhe40
5
srebf1
5
bhlhe40 inhibits
4

Similar Publications

Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant tumor with a notably poor response to therapy due to its immunosuppressive tumor microenvironment (TME) and intrinsic drug resistance. The oncolytic virus (OV) represents a promising therapeutic strategy capable of transforming the "cold" immunological profile of PDAC tumors to a "hot" one by reshaping the TME. 4-1BB (CD137), a crucial member of the tumor necrosis factor receptor superfamily, plays a significant role in T-cell activation and function.

View Article and Find Full Text PDF

Building of CuO@Cu-TA@DSF/DHA Nanoparticle Targets MAPK Pathway to Achieve Synergetic Chemotherapy and Chemodynamic for Pancreatic Cancer Cells.

Pharmaceutics

December 2024

Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832003, China.

With the increase of reactive oxygen species (ROS) production, cancer cells can avoid cell death and damage by up-regulating antioxidant programs. Therefore, it will be more effective to induce cell death by using targeted strategies to further improve ROS levels and drugs that inhibit antioxidant programs. Considering that dihydroartemisinin (DHA) can cause oxidative damage to protein, DNA, or lipids by producing excessive ROS, while, disulfiram (DSF) can inhibit glutathione (GSH) levels and achieve the therapeutic effect by inhibiting antioxidant system and amplifying oxidative stress, they were co-loaded onto the copper peroxide nanoparticles (CuO) coated with copper tannic acid (Cu-TA), to build a drug delivery system of CuO@Cu-TA@DSF/DHA nanoparticles (CCTDD NPs).

View Article and Find Full Text PDF

The Chansu injection (CSI), a sterile aqueous solution derived from Chansu, is applied in clinical settings to support antitumor and anti-radiation treatments. CSI's principal active components, bufadienolides (≥90%), demonstrate potential effects on pancreatic cancer (PDAC), but their underlying mechanisms remain unclear. This study aimed to elucidate the antitumor effects and pathways associated with CSI in PDAC.

View Article and Find Full Text PDF

Albumin-bound paclitaxel (nab-PTX) nanoparticles have been proven effective in treating advanced pancreatic cancer. However, the clinical application of nab-PTX nanoparticles is often associated with suboptimal outcomes and severe side effects due to its non-specific distribution and rapid clearance. This study aims to develop a novel nanoplatform that integrates sonodynamic therapy (SDT) and chemotherapy to enhance treatment efficacy and reduce systemic side effects.

View Article and Find Full Text PDF

The Potential of TRPA1 as a Therapeutic Target in Cancer-A Study Using Bioinformatic Tools.

Pharmaceuticals (Basel)

December 2024

Department of Anatomy, Biophysics and Physiology, Faculty of Biology, University of Bucharest, Spl. Independentei 91-95, 050095 Bucharest, Romania.

The expression of the transient receptor potential 1 (TRPA1) gene is increased in many solid tumours, and its function relates to inflammation, oxidative stress or the presence of toxic substances. However, little is known about the correlation of clinical parameters with patients' cancer stages, metastases and the degree of tumour infiltration by immune cells. We performed a bioinformatic analysis, using databases and public resources to investigate TRPA1 for many available samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!