Cyanobacterial harmful blooms (CyanoHABs) pose a global ecological problem, and their lipopolysaccharides (LPS) are among the bioactive compounds they release. Previous studies on CyanoHAB-LPS from single cyanobacterial species have shown varying bioactivities in different in vitro cell models. In this study, we isolated LPS from 19 CyanoHAB samples collected at 18 water bodies in the Czech Republic over two consecutive seasons. The proportions of cyanobacteria, Gram-negative bacteria (G-), and other bacteria in the biomass were determined by qPCR, while the cyanobacterial genera were identified using light microscopy. In vitro models of keratinocytes (HaCaT), the intestinal epithelium (co-culture of differentiated Caco-2 cells and peripheral blood mononuclear cells - PBMC), and PBMC alone were treated with isolated LPS at concentrations of 50, 100, and 1 µg/ml, respectively. The endotoxin activities of these concentrations were within the range measured in the aquatic environment. Approximately 85-90% of the samples displayed biological activity. However, the potency of individual LPS effects and response patterns varied across the different in vitro models. Furthermore, the observed activities did not exhibit a clear correlation with the taxonomic composition of the phytoplankton community, the relative share of microbial groups in the biomass, endotoxin activity of the LPS, or LPS migration and staining pattern in SDS-PAGE. These findings suggest that the effects of CyanoHAB-LPS depend on the specific composition and abundance of various LPS structures within the complex environmental sample and their interactions with cellular receptors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10794361 | PMC |
http://dx.doi.org/10.1007/s00204-023-03644-8 | DOI Listing |
J Phys Chem A
January 2025
Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States.
Aerosols containing biological material (i.e., bioaerosols) impact public health by transporting toxins, allergens, and diseases and impact the climate by nucleating ice crystals and cloud droplets.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China. Electronic address:
Microcystis aeruginosa, a harmful alga in cyanobacterial blooms, damages aquatic ecosystems. Species diversity may control the blooms by increasing ecosystem stability and resource utilization. The growth and photosynthetic systems of M.
View Article and Find Full Text PDFSci Rep
January 2025
Laboratory of Metabolomics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30387, Poland.
Viruses that infect cyanobacteria are an integral part of aquatic food webs, influencing nutrient cycling and ecosystem health. However, the significance of virus host range, replication efficiency, and host compatibility on cyanobacterial dynamics, growth, and toxicity remains poorly understood. In this study, we examined the effects of cyanophage additions on the dynamics and activity of optimal, sub-optimal, and non-permissive cyanobacterial hosts in cultures of Microcystis aeruginosa and Raphidiopsis raciborskii.
View Article and Find Full Text PDFWater Res
January 2025
Laboratory of Algology and Microbial Ecology, Nature Research Centre, Akademijos Str. 2, LT-08412, Vilnius, Lithuania. Electronic address:
Cyanobacterial blooms, driven by nutrient loading and temperature, pose significant ecological and economic challenges. This study employs a combined data-driven and trait-based modelling approach to predict changes in cyanobacterial communities in a mono- and a polydominant shallow temperate lakes under varying temperature and nutrient scenarios. Results of the AQUATOX simulation model for two aquatic systems suggest that a 2 °C temperature increase, consistent with Intergovernmental Panel on Climate Change's predictions, may influence cyanobacteria species composition and dominance, with trends indicating a possible shift favouring Nostocales over Oscillatoriales and Chroococcales.
View Article and Find Full Text PDFEnviron Pollut
January 2025
School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL. Electronic address:
Harmful algal blooms (HABs) cause severe economic and environmental impacts, including hypoxic events and the production of toxins and off-flavor compounds. Chemical treatments, such as copper sulfate pentahydrate (CuSO·5HO), are often used to mitigate the damaging effects of algal blooms. However, treatment effects are usually short-lived leading to waterbodies requiring repeated CuSO·5HO applications to control persistent algal blooms, particularly in highly eutrophic systems, such as aquaculture ponds or small agricultural impoundments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!