Cytotoxicity of PEG-Coated Gold and Gold-Iron Alloy Nanoparticles: ROS or Ferroptosis?

Nanomaterials (Basel)

Department of Chemical Sciences, University of Padova, Via Marzolo 1, I-35131 Padova, Italy.

Published: November 2023

Nanomedicine relies on the exploitation of nanoscale constructs for therapeutic and diagnostic functions. Gold and gold-iron alloy nanoparticles (NPs) are two examples of nanomaterials with favorable features for use in nanomedicine. While gold NPs have been studied extensively in the last decades, they are not biodegradable. Nonetheless, biodegradation was recently observed in gold alloys with iron obtained using laser ablation in liquid (LAL). Hence, there is a significant interest in the study of the biological effects of gold and gold-iron alloy nanoparticles, starting from their tolerability and cytotoxicity. In this study, these two classes of NPs, obtained via LAL and coated with biocompatible polymers such as polyethylene glycol, were investigated in terms of their cytotoxicity in fibroblasts, prostate cancer cells (PC3) and embryonic kidney cells (HEK). We also explored the effects of different synthetic procedures, stabilizing additives, and the possible mechanisms behind cell mortality such as the formation of reactive oxygen species (ROS) or ferroptosis. NPs larger than 200 nm were associated with lower cell tolerability. The most tolerable formulations were pure PEG-Au NPs, followed by PEG-Au-Fe NPs with a hydrodynamic size < 50 nm, which displayed a toxicity of only 20% in fibroblasts after 72 h of incubation. In addition, tumor cells and highly proliferating HEK cells are more sensitive to the NPs than fibroblasts. However, a protective effect of catalase was found for cells incubated with PEG-Au-Fe NPs, indicating an important role of hydrogen peroxide in alloy NP interactions with cells. These results are crucial for directing future synthetic efforts for the realization of biocompatible Au NPs and biodegradable and cytocompatible Au-Fe alloy NPs. Moreover, the correlation of the cytocompatibility of NPs with ROS and ferroptosis in cells is of general interest and applicability to other types of nanomaterials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10708329PMC
http://dx.doi.org/10.3390/nano13233044DOI Listing

Publication Analysis

Top Keywords

gold gold-iron
12
gold-iron alloy
12
alloy nanoparticles
12
nps
11
ros ferroptosis
8
peg-au-fe nps
8
cells
7
gold
5
alloy
5
cytotoxicity peg-coated
4

Similar Publications

Nanozymes, constituting of inorganic nanomaterials, are the sustainable and cost-effective alternatives of the naturally abundant enzymes. For more than a decade, nanozymes have shown astonishingly enhanced enzymatic activity as compared to its naturally occurring counterpart and emerged as a potential platform in biomedical science. The current study reports a novel flower shaped gold-iron oxide nanocomposite prepared via a facile and green solution phase redox mediated synthesis.

View Article and Find Full Text PDF

This dataset is comprised of a library of atomistic structure files and corresponding X-ray diffraction (XRD) profiles and vibrational density of states (VDoS) profiles for bulk single crystal silicon (Si), gold (Au), magnesium (Mg), and iron (Fe) with and without disorder introduced into the atomic structure and with and without mechanical loading. Included with the atomistic structure files are descriptor files that measure the stress state, phase fractions, and dislocation content of the microstructures. All data was generated via molecular dynamics or molecular statics simulations using the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) code.

View Article and Find Full Text PDF

This paper explores the integral role of metallic nanomaterials in drug delivery, specifically focusing on their unique characteristics and applications. Exhibiting unique size, shape, and surface features, metallic nanoparticles (MNPs) (e.g.

View Article and Find Full Text PDF

Nanoparticles in cancer theragnostic and drug delivery: A comprehensive review.

Life Sci

September 2024

Centre for Advanced Materials, Qatar University, Qatar; Centre for Advanced Materials, Qatar University, Qatar Department of Mechanical and Industrial Engineering, Qatar.

This comprehensive review provides an in-depth analysis of how nanotechnology has revolutionized cancer theragnostic, which combines diagnostic and therapeutic methods to customize cancer treatment. The study examines the unique attributes, uses, and difficulties linked to different types of nanoparticles, including gold, iron oxide, silica, Quantum dots, Carbon nanotubes, and liposomes, in the context of cancer treatment. In addition, the paper examines the progression of nanotheranostics, emphasizing its uses in precise medication administration, photothermal therapy, and sophisticated diagnostic methods such as MRI, CT, and fluorescence imaging.

View Article and Find Full Text PDF

Nowadays, organic dyes are prevalent components in wastewater discharges due to their extensive use in various industries, posing a significant threat to public health across different organisms. As a result, wastewater treatment has become an indispensable requirement. In this study, we synthesized supermagnetic iron oxide (FeO NPs) and gold-iron oxide bimetallic nanoparticles (Au@FeO BNPs) using an eco-friendly method that involved natural compounds extracted from brown Egyptian propolis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!