Commonly used sample introduction systems for inductively coupled plasma mass spectrometry (ICP-MS) are generally not well-suited for single particle ICP-MS (spICP-MS) applications due to their high sample requirements and low efficiency. In this study, the first completely 3D-printed, polymer SIS was developed to facilitate spICP-MS analysis. The system is based on a microconcentric pneumatic nebulizer and a single-pass spray chamber with an additional sheath gas flow to further facilitate the transport of larger droplets or particles. The geometry of the system was optimized using numerical simulations. Its aerosol characteristics and operational conditions were studied via optical particle counting and a course of spICP-MS measurements, involving nanodispersions and cell suspensions. In a comparison of the performance of the new and the standard (quartz microconcentric nebulizer plus a double-pass spray chamber) systems, it was found that the new sample introduction system has four times higher particle detection efficiency, significantly better signal-to-noise ratio, provides ca. 20% lower size detection limit, and allows an extension of the upper limit of transportable particle diameters to about 25 µm.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10708091PMC
http://dx.doi.org/10.3390/nano13233018DOI Listing

Publication Analysis

Top Keywords

sample introduction
12
3d-printed polymer
8
introduction system
8
spray chamber
8
design optimization
4
optimization application
4
application 3d-printed
4
sample
4
polymer sample
4
system
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!