We investigate the coherence properties of a transmission electron microscope by analyzing nano-diffraction speckles originating from bulk metallic glass. The spatial correlation function of the coherent diffraction patterns, obtained in the transmission geometry, reveals the highly coherent nature of the electron probe beam and its spatial dimension incident on the sample. Quantitative agreement between the measured speckle contrast and an analytical model yields estimates for the transverse and longitudinal coherence lengths of the source. We also demonstrate that the coherence can be controlled by changing the beam convergence angle. Our findings underscore the preservation of electron beam coherence throughout the electron optics, as evidenced by the high-contrast speckles observed in the scattering patterns of the amorphous system. This study paves the way for the application of advanced coherent diffraction methodologies to investigate local structures and dynamics occurring at atomic-length scales across a diverse range of materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10708024 | PMC |
http://dx.doi.org/10.3390/nano13233016 | DOI Listing |
Anal Chem
January 2025
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
As the most common and lethal cancer of the female gonads, ovarian cancer (OC) has a grave impact on people's health. OC is asymptomatic, insidious in onset, difficult to diagnose and treat, fast-growing, and easy to metastasize and has poor prognosis and high mortality. How to detect OC as early as possible and treat it without side effects has become a challenging medical problem.
View Article and Find Full Text PDFCardiovasc Eng Technol
January 2025
Department of Research and Development, Nonprofit Organization of Research Institute of Life Benefit, Sapporo, Hokkaido, 005-0006, Japan.
Purpose: Dysfunction of vasomotor reactions due to arteriolar smooth muscle causes serious adverse events, such as loss of hemodynamic coherence. This in turn can increase risks of cardiovascular-related diseases. A noninvasive and quantitative evaluation of microvascular disorder is therefore very important for early diagnosis and treatment.
View Article and Find Full Text PDFACS Nano
January 2025
State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
Photothermal disinfection (PTD) offers promising potential for water purification due to its sustainable and broad-spectrum bactericidal properties, although it is hindered by slow charge separation in photosensitizers. Herein, we present a plasma-mediated PTD technique utilizing an efficient localized heating effect induced by incident light at specific wavelengths for rapid bacterial inactivation. A metallic CuS photosensitizer, derived from electronic waste through a biomimetic transmembrane confined-assembled strategy, facilitates collective and coherent oscillation of free electrons around Cu atoms in the near-infrared range.
View Article and Find Full Text PDFISA Trans
January 2025
State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China. Electronic address:
This paper addresses the critical challenge of interpretability in machine learning methods for machine fault diagnosis by introducing a novel ad hoc interpretable neural network structure called Sparse Temporal Logic Network (STLN). STLN conceptualizes network neurons as logical propositions and constructs formal connections between them using specified logical operators, which can be articulated and understood as a formal language called Weighted Signal Temporal Logic. The network includes a basic word network using wavelet kernels to extract intelligible features, a transformer encoder with sparse and structured neural attention to locate informative signal segments relevant to decision-making, and a logic network to synthesize a coherent language for fault explanation.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, USA.
Photosynthetic reaction center proteins (RCs) provide ideal model systems for studying quantum entanglement between multiple spins, a quantum mechanical phenomenon wherein the properties of the entangled particles become inherently correlated. Following light-generated sequential electron transfer, RCs generate spin-correlated radical pairs (SCRPs), also referred to as entangled spin qubit (radical) pairs (SQPs). Understanding and controlling coherence mechanisms in SCRP/SQPs is important for realizing practical uses of electron spin qubits in quantum sensing applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!