Introduction: Healthcare-associated infections in the post-pandemic era are as important as they were before COVID-19. The dominant route of transmission of microorganisms in health care units is the contact route, for which hand hygiene is of cardinal importance, but also effective disinfection of touch surfaces. Traditional disinfection based on chemical compounds is sensitive to human errors. Therefore, a valuable supplement to it can be contactless disinfection methods, including the use of UV-C. The aim of the study was to assess the effectiveness of UV-C radiation in eliminating selected, most important pathogens of particular epidemic importance from surfaces made of various materials: stainless steel, plastic and glass, most often found in hospital conditions.

Material And Method: In laboratory conditions, the study was conducted using bacterial strains of great epidemiological importance and . In hospital wards, samples were taken before and after disinfection for comparisons of the composition and quantity of bacteria. In laboratory conditions, carriers made of steel, plastic and glass were contaminated with a bacterial suspension with a density of approx. 0.5 McFarland, and then the density of persistent microorganisms was assessed after 10 min of UV-C irradiation.

Results: The high effectiveness of UV-C radiation in eliminating bacteria contaminating touch surfaces in hospital wards and in laboratory conditions has been confirmed. The elimination efficiency in laboratory conditions was slightly lower (statistically insignificant) on the plastic surface, which is probably related to subtle differences in the thickness of the contaminating layer. Hydrophobic properties and the smallest suspension diameter were confirmed for the tested plastic carriers.

Conclusions: UV-C disinfection is a desirable element to support traditional, chemical methods of disinfection in hospital conditions, effective against multidrug-resistant bacteria and .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10706677PMC
http://dx.doi.org/10.3390/healthcare11233096DOI Listing

Publication Analysis

Top Keywords

laboratory conditions
20
uv-c radiation
12
radiation eliminating
12
touch surfaces
12
effectiveness uv-c
8
steel plastic
8
plastic glass
8
hospital wards
8
uv-c
6
conditions
6

Similar Publications

Digging deeper into necrotizing enterocolitis: bridging clinical, microbial, and molecular perspectives.

Gut Microbes

December 2025

Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China.

Necrotizing Enterocolitis (NEC) is a severe, life-threatening inflammatory condition of the gastrointestinal tract, especially affecting preterm infants. This review consolidates evidence from various biomedical disciplines to elucidate the complex pathogenesis of NEC, integrating insights from clinical, microbial, and molecular perspectives. It emphasizes the modulation of NEC-associated inflammatory pathways by probiotics and novel biologics, highlighting their therapeutic potential.

View Article and Find Full Text PDF

Objectives: As one of the most common complications of laryngopharyngeal reflux or gastroesophageal reflux disease, dental erosion presents a significant association with laryngopharyngeal reflux. This study aimed to elucidate the role of laryngopharyngeal reflux and gastroesophageal reflux disease on the severity and occurrence of dental erosion in adult populations.

Methods: A comprehensive search was performed in the databases of PubMed/MEDLINE, Web of Science, Cochrane Library, and Scopus for English literature published from July 1999 to June 2024.

View Article and Find Full Text PDF

Objectives: To investigate the clinical and laboratory features of Sjögren's syndrome-associated autoimmune liver disease (SS-ALD) patients and identify potential risk and prognostic factors.

Methods: SS patients with or without ALD, who visited Tongji Hospital between the years 2011 and 2021 and met the 2012 American College of Rheumatology (ACR) classification criteria for Sjögren's syndrome, were retrospectively enrolled. The clinical and laboratory data of the enrolled patients, including autoimmune antibodies, were collected and analyzed with principal component analysis, correlation analysis, LASSO regression, and Cox regression.

View Article and Find Full Text PDF

Modulation of Intestinal Inflammation and Protection of Dopaminergic Neurons in Parkinson's Disease Mice through a Probiotic Formulation Targeting NLRP3 Inflammasome.

J Neuroimmune Pharmacol

January 2025

Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, PR China.

Emerging evidence highlights the significance of peripheral inflammation in the pathogenesis of Parkinson's disease (PD) and suggests the gut as a viable therapeutic target. This study aimed to explore the neuroprotective effects of the probiotic formulation VSL#3 and its underlying mechanism in a PD mouse model induced by MPTP. Following MPTP administration, the striatal levels of dopamine and its metabolites, as along with the survival rate of dopaminergic neurons in the substantia nigra, were significantly reduced in PD mice.

View Article and Find Full Text PDF

This study aimed to identify shared gene expression related to circadian rhythm disruption in polycystic ovary syndrome (PCOS) and non-alcoholic fatty liver disease (NAFLD) to discover common diagnostic biomarkers. Visceral fat RNA samples were collected from 12 PCOS and 14 non-PCOS patients, a sample size representing the clinical situation and sufficient to capture PCOS gene expression profiles. Along with liver transcriptome profiles from NAFLD patients, these data were analyzed to identify crosstalk circadian rhythm-related genes (CRRGs) between the diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!