Diabetic patients with critical limb ischemia face a high rate of limb amputation. Regeneration of the vasculature and skeletal muscles can salvage diseased limbs. Therapy using stem cell-derived exosomes that contain multiple proangiogenic and promyogenic factors represents a promising strategy. Yet the therapeutic efficacy is not optimal because exosomes alone cannot efficiently rescue and recruit endothelial and skeletal muscle cells and restore their functions under hyperglycemic and ischemic conditions. To address these limitations, we fabricated ischemic-limb-targeting stem cell-derived exosomes and oxygen-releasing nanoparticles and codelivered them in order to recruit endothelial and skeletal muscle cells, improve cell survival under ischemia before vasculature is established, and restore cell morphogenic function under high glucose and ischemic conditions. The exosomes and oxygen-releasing nanoparticles, delivered by intravenous injection, specifically accumulated in the ischemic limbs. Following 4 weeks of delivery, the exosomes and released oxygen synergistically stimulated angiogenesis and muscle regeneration without inducing substantial inflammation and reactive oxygen species overproduction. Our work demonstrates that codelivery of exosomes and oxygen is a promising treatment solution for saving diabetic ischemic limbs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10790628 | PMC |
http://dx.doi.org/10.1021/acsnano.3c08088 | DOI Listing |
Mol Cell Biochem
January 2025
Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran.
Ferroptosis is a novel, iron-dependent form of non-apoptotic cell death characterized by the accumulation of lipid reactive oxygen species (ROS) and mitochondrial shrinkage. It is closely associated with the onset and progression of various diseases, especially cancer, at all stages, making it a key focus of research for developing therapeutic strategies. Numerous studies have explored the role of microRNAs (miRNAs) in regulating ferroptosis by modulating the expression of critical genes involved in iron metabolism and lipid peroxidation.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Paediatrics & Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
Melanoma is the most aggressive type of skin cancers. Traditional chemotherapy and radiotherapy have limited effectiveness and can lead to systemic side effects. Photodynamic therapy (PDT) is a photoresponsive cancer therapy based on photosensitizers to generate reactive oxygen species (ROS) to eradicate tumor cells.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain.
Several microRNAs (miRNAs) emerged as powerful regulators of fibrotic processes, "fibromiRs", and can also influence the expression of genes responsible for the generation of reactive oxygen species, "redoximiRs". We aimed to investigate whether plasma exosomes from hypertensive and diabetes patients are enriched in fibromiRs and redoximiRs using deep sequencing technology and their association with relevant signalling pathways implicated in oxidative stress and fibrogenesis by GO terms and KEGG pathways. RNA-Seq analysis from P-EXO identified 31 differentially expressed (DE) miRNAs in patients compared to controls, of which 77% are biofluid specific.
View Article and Find Full Text PDFBiol Cell
January 2025
Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran.
Ferroptosis is a type of cell death that multiple mechanisms and pathways contribute to the positive and negative regulation of it. For example, increased levels of reactive oxygen species (ROS) induce ferroptosis. ferroptosis unlike apoptosis, it is not dependent on caspases, but is dependent on iron.
View Article and Find Full Text PDFStem Cells Int
January 2025
Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
Renal dysfunction due to ischemia-reperfusion injury (IRI) is a common problem after kidney transplantation. In recent years, studies on animal models have shown that exosomes derived from mesenchymal stem cells (MSC-Exo) play an important role in treating acute kidney injury (AKI) and promoting tissue repair. The microneedle patch provides a noninvasive and targeted delivery system for exosomes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!