Down syndrome (DS), or Trisomy 21, is the most common chromosomal disorder in humans. Men with DS are infertile. The DYRK1A gene on Hsa21 is involved in several features of DS. Overexpression of the homolog dyrk1A disrupts primordial germ cell migration in zebrafish, and overexpression of Dyrk1A impairs gonadotropic axis function and the early stages of spermatogenesis in the mouse. Other genes on Hsa21 might be involved in the pathogenesis of infertility in DS. We investigated the Dp(16)1Yey mouse model of DS, which features segmental duplication of chromosome Mmu16 (orthologous to a large part of Hsa21 and carrying Dyrk1A and 112 other genes). Using an immunohistochemical assay for the spermatogonial marker STRA8, we observed spermatogonial depletion in the Dp(16)1Yey mouse. This was correlated with low mRNA expression of GFR1 (a marker of the self-renewal stem cell pool) in an RT-qPCR assay and low protein expression of PLZF (a marker of differentiating stem cells) in a slot-blot assay. Spermatogenesis was present but impaired, with a low sperm count, low protamine-1 expression, a low testis weight, and a low seminiferous tubule diameter. Low circulating luteinizing hormone and follicle-stimulating hormone levels and an elevated testis anti-Müllerian hormone level (as measured in ELISAs) revealed the presence of hypogonadotropic hypogonadism. The Dp(16)1Yey mouse model of DS recapitulates observations made in zebrafish and mice overexpressing DYRK1A homologs. The presence of an excess of Mmu16 material perturbs spermatogenesis and the gonadotropic axis. More generally, DYRK1A's role in human infertility (outside DS) remains to be characterized.

Download full-text PDF

Source
http://dx.doi.org/10.1530/REP-23-0233DOI Listing

Publication Analysis

Top Keywords

dp161yey mouse
16
mouse model
12
spermatogonial depletion
8
hsa21 involved
8
gonadotropic axis
8
low
7
mouse
5
dyrk1a
5
spermatogenesis
4
depletion spermatogenesis
4

Similar Publications

Down syndrome (DS) is a genetic disease characterized by a supernumerary chromosome 21. Intellectual deficiency (ID) is one of the most prominent features of DS. Central nervous system defects lead to learning disabilities, motor and language delays, and memory impairments.

View Article and Find Full Text PDF

Down syndrome (DS) stands as the prevalent genetic cause of intellectual disability, yet comprehensive understanding of its cellular and molecular underpinnings remains limited. In this study, we explore the cellular landscape of the hippocampus in a DS mouse model, the Ts65Dn, through single-nuclei transcriptional profiling. Our findings demonstrate that trisomy manifests as a highly specific modification of the transcriptome within distinct cell types.

View Article and Find Full Text PDF

Down syndrome (DS), affecting ∼1 in 800 live births, is caused by the triplication of human chromosome 21 (Hsa21). Individuals with DS have skeletal features including craniofacial abnormalities and decreased bone mineral density (BMD). Lowered BMD can lead to increased fracture risk, with common fracture points at the femoral neck and lumbar spine.

View Article and Find Full Text PDF

Down syndrome (DS), or Trisomy 21, is the most common chromosomal disorder in humans. Men with DS are infertile. The DYRK1A gene on Hsa21 is involved in several features of DS.

View Article and Find Full Text PDF

Down syndrome (DS) stands as the prevalent genetic cause of intellectual disability, yet comprehensive understanding of its cellular and molecular underpinnings remains limited. In this study, we explore the cellular landscape of the hippocampus in a DS mouse model through single-nuclei transcriptional profiling. Our findings demonstrate that trisomy manifests as a highly specific modification of the transcriptome within distinct cell types.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!