Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The SARS-CoV-2, responsible for the COVID-19 pandemic has wrecked devastation throughout the globe. The SARS-CoV-2 spike (S) glycoprotein plays crucial role in virus attachment, fusion, and entry. This study aims to identify inhibitors targeting the receptor binding domain (RBD) of the S protein using computational and experimental techniques. We carried out virtual screening of four datasets against the S-RBD. Six potential candidate inhibitors were selected for experimental evaluation. Here, we provide experimental evidence that the molecules 9‴-MethyllithosperMate, Epimedin A, Pentagalloylglucose, and Theaflavin-3-gallate have a high binding affinity towards SARS-CoV-2 S-RBD. 9‴-MethyllithosperMate with a value of 1.3 nM serves as the best inhibitor, followed by others with values in micromolar range. We performed molecular dynamics simulation to assess the binding stability of these inhibitors. Hence, our study reports novel inhibitors against the SARS-CoV-2 S-RBD and their predicted binding mode also suggest the possibility to interfere with the ACE2 binding.Communicated by Ramaswamy H. Sarma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/07391102.2023.2291161 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!