In resting-state functional magnetic resonance imaging (rs-fMRI) studies, global signal regression (GSR) is a controversial preprocessing strategy. It effectively eliminates global noise driven by motion and respiration but also can introduce artifacts and remove functionally relevant metabolic information. Most preclinical rs-fMRI studies are performed in anesthetized animals, and anesthesia will alter both metabolic and neuronal activity. In this study, we explored the effect of GSR on rs-fMRI data collected under anesthetized and awake state in mice ( = 12). We measured global signal amplitude, and also functional connectivity (FC), functional connectivity density (FCD) maps, and brain modularity, all commonly used data-driven analysis methods to quantify connectivity patterns. We found that global signal amplitude was similar between the awake and anesthetized states. However, GSR had a different impact on connectivity networks and brain modularity changes between states. We demonstrated that GSR had a more prominent impact on the anesthetized state, with a greater decrease in functional connectivity and increased brain modularity. We classified mice using the change in amplitude of brain modularity coefficient (Δ) before and after GSR processing. The results revealed that, when compared with the largest Δ group, the smallest Δ group had increased FCD in the cortex region in both the awake and anesthetized states. This suggests differences in individual mice may affect how GSR differentially affects awake versus anesthetized functional connectivity. This study suggests that, for rs-fMRI studies which compare different physiological states, researchers should use GSR processing with caution.

Download full-text PDF

Source
http://dx.doi.org/10.1089/brain.2023.0032DOI Listing

Publication Analysis

Top Keywords

global signal
16
functional connectivity
16
brain modularity
16
awake anesthetized
12
rs-fmri studies
12
signal regression
8
signal amplitude
8
anesthetized states
8
gsr processing
8
anesthetized
7

Similar Publications

Introduction: Colorectal cancer (CRC) is the second most common cause of cancer-related deaths globally. The gut microbiota, along with adenomatous polyps (AP), has emerged as a plausible contributor to CRC progression. This study aimed to scrutinize the impact of the FadA antigen derived from Fusobacterium nucleatum on the expression levels of the ANXA2 ceRNA network and assess its relevance to CRC advancement.

View Article and Find Full Text PDF

Globally, the incidence and death rates associated with cancer persist in rising, despite considerable advancements in cancer therapy. Although some malignancies are manageable by a mix of chemotherapy, surgery, radiation, and targeted therapy, most malignant tumors either exhibit poor responsiveness to early identification or endure post-treatment survival. The prognosis for prostate cancer (PCa) is unfavorable since it is a perilous and lethal malignancy.

View Article and Find Full Text PDF

New Numerical Inversion Method to Improve the Spatial Accuracy of Elemental Imaging for LA-ICP-MS.

Anal Chem

January 2025

State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, PR China.

The elemental imaging of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) provides spatial information on elements and therefore can further investigate the growth or evolution processes of an analyte. However, the accurate determination of spatial information is limited by the decoupling between the elemental distribution and mass spectrometry signals. This phenomenon, which is more distinct when high-diffusion ablation cells are used, arises from the overlap of ablation and the transport dispersion of aerosols.

View Article and Find Full Text PDF

Vector-borne diseases pose a severe threat to human life, contributing significantly to global mortality. Understanding the structure-function relationship of the vector proteins is pivotal for effective insecticide development due to their involvement in drug resistance and disease transmission. This study reports the structural and dynamic features of D1-like dopamine receptors (DARs) in disease-causing mosquito species, such as Aedes aegypti, Culex quinquefasciatus, Anopheles gambiae, and Anopheles stephensi.

View Article and Find Full Text PDF

Reciprocal and non-reciprocal effects of clinically relevant SETBP1 protein dosage changes.

Hum Mol Genet

January 2025

Department of Human Genetics, McGill University, 3666 McTavish Street, Montreal, QC H3A 1Y2, Canada.

Many genes in the human genome encode proteins that are dosage sensitive, meaning they require protein levels within a narrow range to properly execute function. To investigate if clinically relevant variation in protein levels impacts the same downstream pathways in human disease, we generated cell models of two SETBP1 syndromes: Schinzel-Giedion Syndrome (SGS) and SETBP1 haploinsufficiency disease (SHD), where SGS is caused by too much protein, and SHD is caused by not enough SETBP1. Using patient and sex-matched healthy first-degree relatives from both SGS and SHD SETBP1 cases, we assessed how SETBP1 protein dosage affects downstream pathways in human forebrain progenitor cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!