Low molecular-weight thiols as glutathione and cysteine are an important part of the cell's redox regulation system. Previously, we have shown that inactivation of ADP-heptose synthesis in Escherichia coli with a gmhA deletion induces the oxidative stress. It is accompanied by rearrangement of thiol homeostasis and increased sensitivity to antibiotics. In our study, we found that restriction of cysteine metabolism (ΔcysB and ΔcysE) and inhibition of glutathione synthesis (ΔgshAB) lead to a decrease in the sensitivity of the ΔgmhA mutant to antibiotics but not to its expected increase. At the same time, blocking of the export of cysteine (ΔeamA) or increasing import (Ptet-tcyP) into cells of the oxidized form of cysteine-cystine leads to an even greater increase in the sensitivity of gmhA-deleted cells to antibiotics. In addition, there is no correlation between the cytotoxic effect of antibiotics and the level of reactive oxygen species (ROS), the total pool of thiols, or the viability of the initial cell population. However, a correlation between the sensitivity to antibiotics and the level of oxidized glutathione in cells was found in our study. Apparently, a decrease in the content of low-molecular-weight thiols saves NADPH equivalents and limits the processes of protein redox modification. This leads to increasing of resistance of the ΔgmhA strain to antibiotics. An increase in low-molecular-weight thiols levels requires a greater expenditure of cell resources, leads to an increase in oxidized glutathione and induces to greater increase in sensitivity of the ΔgmhA strain to antibiotics.

Download full-text PDF

Source

Publication Analysis

Top Keywords

escherichia coli
8
adp-heptose synthesis
8
sensitivity antibiotics
8
sensitivity Δgmha
8
greater increase
8
increase sensitivity
8
antibiotics level
8
oxidized glutathione
8
low-molecular-weight thiols
8
Δgmha strain
8

Similar Publications

Lipases, enzymes that perform the hydrolysis of triglycerides into fatty acids and glycerol, present a potential paradigm shift in the realms of food and detergent industries. Their enhanced efficiency, energy conservation and environmentally friendly attributes make them promising substitutes for chemical catalysts. Motivated by this prospect, this present study was targeted on the heterologous expression of a lipase gene, employing E.

View Article and Find Full Text PDF

Development of pH and enzyme dual responsive chitosan/polyaspartic acid nanoparticle-embedded nanofibers for fruit preservation.

Int J Biol Macromol

January 2025

Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China. Electronic address:

This study focuses on the development and application of tea polyphenol-loaded chitosan/polyaspartic acid nanoparticles (TP@CS/PASP-Nps) embedded within polyvinyl alcohol (PVA) nanofibers to extend the shelf life of fruit. The nanofibers were fabricated using electrospinning, which enhanced the stability and uniform dispersion of the nanoparticles. Experimental results demonstrated that the TP@CS/PASP nanoparticles exhibit significant pH and protease-responsive release of TP, with a cumulative release of 56.

View Article and Find Full Text PDF

In situ growth of ZIF-8 nanoparticles on pure chitosan nanofibrous membranes for efficient antimicrobial wound dressings.

Int J Biol Macromol

January 2025

Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China. Electronic address:

Bacterial infections and excessive accumulation of wound exudates remain the main obstacles and clinical challenges to the healing of chronic cutaneous wounds. Conventional dressings are commonly used medical materials for acute wound care, but they do not possess the bacterial infection resistance required for chronic wound treatment. Herein, we prepared pure chitosan nanofibrous membranes (C) by electrospinning with poly(ethylene oxide) (PEO) as a sacrificial additive and then loaded with zinc-based metal-organic framework (MOF) as a novel antimicrobial wound dressing.

View Article and Find Full Text PDF

Reliability of various Antimicrobial Susceptibility Testing Methods for Piperacillin/tazobactam in challenging Escherichia coli isolates.

J Glob Antimicrob Resist

January 2025

Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands. Electronic address:

Piperacillin/tazobactam antimicrobial susceptibility testing (AST) against Enterobacterales can be challenging. The aim of this study was to assess the reproducibility of various automated (Vitek®2) and non-automated AST methods (broth microdilution (BMD), minimum inhibitory concentration (MIC) test strip, and disk diffusion) for piperacillin/tazobactam in 'challenging' E. coli isolates.

View Article and Find Full Text PDF

Macrolide resistance due to (55).

Microbiol Spectr

January 2025

Institute for Microbial Systems and Society, Faculty of Science, University of Regina, Regina, Saskatchewan, Canada.

Unlabelled: Antimicrobial resistance (AMR) is a global threat. The identification and characterization of novel resistance genes is integral to AMR surveillance. The (55) gene was originally identified through whole genome sequencing of macrolide-resistant strains of .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!