Type 2 diabetes (T2D) results from insulin secretory dysfunction arising in part from the loss of pancreatic islet β-cells. Several factors contribute to β-cell loss, including islet amyloid formation, which is observed in over 90% of individuals with T2D. The amyloid is comprised of human islet amyloid polypeptide (hIAPP). Here we provide evidence that early in aggregation, hIAPP forms toxic oligomers prior to formation of amyloid fibrils. The toxic oligomers contain α-sheet secondary structure, a nonstandard secondary structure associated with toxic oligomers in other amyloid diseases. De novo, synthetic α-sheet compounds designed to be nontoxic and complementary to the α-sheet structure in the toxic oligomers inhibit hIAPP aggregation and neutralize oligomer-mediated cytotoxicity in cell-based assays. In vivo administration of an α-sheet design to mice for 4 weeks revealed no evidence of toxicity nor did it elicit an immune response. Furthermore, the α-sheet designs reduced endogenous islet amyloid formation and mitigation of amyloid-associated β-cell loss in cultured islets isolated from an hIAPP transgenic mouse model of islet amyloidosis. Characterization of the involvement of α-sheet in early aggregation of hIAPP and oligomer toxicity contributes to elucidation of the molecular mechanisms underlying amyloid-associated β-cell loss.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10823758 | PMC |
http://dx.doi.org/10.1002/pro.4854 | DOI Listing |
Int J Mol Sci
January 2025
Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico.
Diabetes Mellitus Type 1 (DM1) is an autoimmune disease characterized by the destruction of beta cells in the pancreas. Although amyloid formation has been well-studied in Diabetes Mellitus Type 2 (DM2), its role in DM1 remains unclear. Understanding how islet amyloid polypeptide (IAPP) contributes to beta cell dysfunction and death in DM1 could provide critical insights into disease mechanisms and pave the way for novel diagnostic and therapeutic strategies.
View Article and Find Full Text PDFBiomolecules
January 2025
School of Systems Biology, George Mason University, Fairfax, VA 22030, USA.
Amylin and amyloid β belong to the same protein family and activate the same receptors. Amyloid β levels are elevated in Alzheimer's disease. Recent studies have demonstrated that amylin-based peptides can reduce the symptoms of Alzheimer's disease in animal models.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Technische Universität München, Division of Peptide Biochemistry, Emil-Erlenmeyer-Forum 5, 85354, Freising, GERMANY.
Amyloid self-assembly of α-synuclein (αSyn) is linked to the pathogenesis of Parkinson's disease (PD). Type 2 diabetes (T2D) has recently emerged as a risk factor for PD. Cross-interactions between their amyloidogenic proteins may act as molecular links.
View Article and Find Full Text PDFHuman amylin, called also islet amyloid polypeptide (hIAPP), is the principal constituent of amyloid deposits in the pancreatic islets. Together with hyperglycemia, hIAPP-derived oligomers and aggregates are important culprits in type 2 diabetes mellitus (T2DM). Preventing aggregation, and in particular inhibiting the formation and/or stimulating degradation of toxic amylin oligomers formed early in the process, may reduce the negative effects of T2DM.
View Article and Find Full Text PDFNat Chem Biol
January 2025
Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA.
Protein aggregates are associated with numerous diseases. Here we report a platform for the rapid phenotypic selection of protein aggregation inhibitors from genetically encoded cyclic peptide libraries in Escherichia coli based on phage-assisted continuous evolution (PACE). We developed a new PACE-compatible selection for protein aggregation inhibition and used it to identify cyclic peptides that suppress amyloid-β42 and human islet amyloid polypeptide aggregation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!