Crosstalk mechanisms between glomerular endothelial cells and podocytes in renal diseases and kidney transplantation.

Kidney Res Clin Pract

Department of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.

Published: January 2024

The glomerular filtration barrier (GFB), composed of endothelial cells, glomerular basement membrane, and podocytes, is a unique structure for filtering blood while detaining plasma proteins according to size and charge selectivity. Structurally, the fenestrated endothelial cells, which align the capillary loops, are in close proximity to mesangial cells. Podocytes are connected by specialized intercellular junctions known as slit diaphragms and are separated from the endothelial compartment by the glomerular basement membrane. Podocyte-endothelial cell communication or crosstalk is required for the development and maintenance of an efficient filtration process in physiological conditions. In pathological situations, communication also has an essential role in promoting or delaying disease progression. Podocytes and endothelial cells can secrete signaling molecules, which act as crosstalk effectors and, through binding to their target receptors, can trigger bidirectional paracrine or autocrine signal transduction. Moreover, the emerging evidence of extracellular vesicles derived from various cell types engaging in cell communication has also been reported. In this review, we summarize the principal pathways involved in the development and maintenance of the GFB and the progression of kidney disease, particularly in kidney transplantation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10846991PMC
http://dx.doi.org/10.23876/j.krcp.23.071DOI Listing

Publication Analysis

Top Keywords

endothelial cells
16
cells podocytes
8
kidney transplantation
8
glomerular basement
8
basement membrane
8
cell communication
8
development maintenance
8
endothelial
5
cells
5
crosstalk mechanisms
4

Similar Publications

Cancer-associated fibroblasts (CAFs) are intrinsic components of the tumor microenvironment that promote cancer progression and metastasis. Through an unbiased integrated analysis of gastric tumor grade and stage, we identified a subset of proangiogenic CAFs characterized by high podoplanin (PDPN) expression, which are significantly enriched in metastatic lesions and secrete chemokine (CC-motif) ligand 2 (CCL2). Mechanistically, PDPN(+) CAFs enhance angiogenesis by activating the AKT/NF-κB signaling pathway.

View Article and Find Full Text PDF

Ultraviolet (UV)-induced DNA mutations produce genetic drivers of cutaneous melanoma initiation and numerous neoantigens that can trigger anti-tumor immune responses in the host. Consequently, melanoma cells must rapidly evolve to evade immune detection by simultaneously modulating cell-autonomous epigenetic mechanisms and tumor-microenvironment interactions. Angiogenesis has been implicated in this process; although an increase of vasculature initiates the immune response in normal tissue, solid tumors manage to somehow enhance blood flow while preventing immune cell infiltration.

View Article and Find Full Text PDF

It is becoming more broadly accepted that human-based models are needed to better understand the complexities of the human nervous system and its diseases. The recently developed human brain organotypic culture model is one highly promising model that requires the involvement of neurosurgeons and neurosurgical patients. Studies have investigated the electrophysiological properties of neurons in such human tissues, but the maintenance of other cell types within explanted brain remains largely unknown.

View Article and Find Full Text PDF

Tertiary lymphoid structures (TLS) are lymphoid formations that develop in non-lymphoid tissues during chronic inflammation, autoimmune diseases, and cancer. Accurate identification and quantification of TLS in tissue can provide crucial insights into the immune response of several disease processes including antitumor immune response. TLS are defined as aggregates of T cells, B cells and dendritic cells.

View Article and Find Full Text PDF

Disorders in pulmonary vascular integrity are a prominent feature in many lung diseases. Paracrine signaling is highly enriched in the lung and plays a crucial role in regulating vascular homeostasis. However, the specific local cell-cell crosstalk signals that maintain pulmonary microvascular stability in adult animals and humans remain largely unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!