Soil organic carbon stock retrieval from Sentinel-2A using a hybrid approach.

Environ Monit Assess

Department of Atmospheric Physics, Faculty of Physics, Saint Petersburg State University, 199034, Saint Petersburg, Russia.

Published: December 2023

AI Article Synopsis

  • Digital soil maps are essential for various fields, and their accuracy is particularly challenged in dense environments like forests where soil is hidden.
  • This study assessed soil organic carbon stocks (SOC) in forests using three methods: regression kriging (RK), random forest (RF), and a hybrid model (RFOK) with Sentinel-2A satellite data, finding SOC ranged from 0.6 to 10.9 kg/m, averaging 4.9 kg/m.
  • The hybrid RFOK method provided the best accuracy (RMSE = 1.58 kg/m, NSE = 0.33) and highlighted the significance of Sentinel-2A's SWIR B12 band, suggesting that considering spatial correlations is crucial for effective

Article Abstract

Digital soil maps find application in numerous fields, making their accuracy a crucial factor. Mapping soil properties in homogeneous landscapes where the soil surface is concealed, as in forests, presents a complex challenge. In this study, we evaluated the spatial distribution of soil organic carbon stocks (SOC) under forest vegetation using three methods: regression kriging (RK), random forest (RF), and RF combined with ordinary kriging of residuals (RFOK) in combination with Sentinel-2A satellite data. We also compared their accuracies and identified key influencing factors. We determined that SOC ranged from 0.6 to 10.9 kg/m with an average value of 4.9 kg/m. Among the modelling approaches, we found that the RFOK exhibited the highest accuracy (RMSE = 1.58 kg/m, NSE = 0.33), while the RK demonstrated a lack of spatial correlation of residuals, rendering this method inapplicable. An analysis of variable importance revealed that the SWIR B12 band of the Sentinel-2A satellite contributed the most to RFOK predictions. We concluded that the RFOK hybrid approach outperformed the others, potentially serving as a foundation for digital soil mapping under similar environmental conditions. Therefore, it is essential to consider spatial correlations when mapping soil properties in ecosystems that are inaccessible for capturing the spectral response of the soil surface.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10661-023-12172-yDOI Listing

Publication Analysis

Top Keywords

soil
8
soil organic
8
organic carbon
8
hybrid approach
8
digital soil
8
mapping soil
8
soil properties
8
soil surface
8
sentinel-2a satellite
8
carbon stock
4

Similar Publications

Cultivable microbial communities associated with plants inhabiting extreme environments have great potential in biotechnological applications. However, there is a lack of knowledge about these microorganisms from Bryophyllum pinnatum (which survives in severely barren soil) and their ability to promote plant growth. The present study focused on the isolation, identification, biochemical characterization, and potential applications of root endophytic bacteria and rhizosphere bacteria.

View Article and Find Full Text PDF

Sustainable management of textile industrial wastewater is one of the severe challenges in the current regime. It has been reported that each year huge amount of textile industry discharge especially the dye released into the environment without pre-treatment that adversely affect the human health and plant productivity. In the present study, different bacterial isolates had been isolated from the industrial effluents and investigated for their bioremediation potential against the malachite green (MG) dye, a major pollutant of textile industries.

View Article and Find Full Text PDF

Multifunctional plant growth-promoting rhizobacteria (PGPR) have garnered significant attention in agricultural applications; however, a few have applied them in crop rotation or intercropping fields. To identify PGPR with strong colonization ability and broad spectrum benefit, we screened strains from the local tobacco rhizosphere and evaluated their growth-promoting effects across various crops and farming systems. In this study, strain L8, identified as , was selected as a multifunctional PGPR capable of producing indole-3-acetic acid (IAA), solubilizing potassium, and mobilizing both organic and inorganic phosphorus.

View Article and Find Full Text PDF

The wheat NLR pair RXL/Pm5e confers resistance to powdery mildew.

Plant Biotechnol J

January 2025

Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.

Powdery mildew poses a significant threat to global wheat production and most cloned and deployed resistance genes for wheat breeding encode nucleotide-binding and leucine-rich repeat (NLR) immune receptors. Although two genetically linked NLRs function together as an NLR pair have been reported in other species, this phenomenon has been relatively less studied in wheat. Here, we demonstrate that two tightly linked NLR genes, RXL and Pm5e, arranged in a head-to-head orientation, function together as an NLR pair to mediate powdery mildew resistance in wheat.

View Article and Find Full Text PDF

Stable Soil Biota Network Enhances Soil Multifunctionality in Agroecosystems.

Glob Chang Biol

January 2025

Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.

Unraveling how agricultural management practices affect soil biota network complexity and stability and how these changes relate to soil processes and functions is critical for the development of sustainable agriculture. However, our understanding of these knowledge still remains unclear. Here, we explored the effects of soil management intensity on soil biota network complexity, stability, and soil multifunctionality, as well as the relationships among these factors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!