Mechanical testing by sporting governing bodies ensures artificial turf surfaces conform with performance standards. Rotational traction is measured using two equivalent devices: a rotational traction tester (RTT) and a lightweight rotational traction tester (LRTT). The devices differ in target rotational velocity; 72 deg/s for the RTT and 30 deg/s for the LRTT. The purpose of this study was to investigate the influence of rotational velocity on peak torque during rotational traction testing. An automated rotational traction tester examined nine rotational velocities between 10 and 210 deg/s, and ten artificial turf surface systems with a range of performance infill materials, infill depths and carpet specifications. Rotations at 10 deg/s produced the lowest peak torques on nine of the ten surfaces. Infill materials with intrinsic viscoelastic properties produced significantly higher peak torques at higher rotational velocities, whereas less elastic infill materials saw no significant increase in peak torque. A mean difference in peak torque of 2.6 Nm was found between the target velocities of the RTT and LRTT. The results support the synchronisation of target velocities for the RTT and LRTT. During standards testing, trials completed below a particular velocity should be repeated to negate velocity effects on peak torque.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10703925 | PMC |
http://dx.doi.org/10.1038/s41598-023-48134-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!