The effect of rotational velocity on rotational traction across a range of artificial turf surface systems.

Sci Rep

Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, UK.

Published: December 2023

AI Article Synopsis

Article Abstract

Mechanical testing by sporting governing bodies ensures artificial turf surfaces conform with performance standards. Rotational traction is measured using two equivalent devices: a rotational traction tester (RTT) and a lightweight rotational traction tester (LRTT). The devices differ in target rotational velocity; 72 deg/s for the RTT and 30 deg/s for the LRTT. The purpose of this study was to investigate the influence of rotational velocity on peak torque during rotational traction testing. An automated rotational traction tester examined nine rotational velocities between 10 and 210 deg/s, and ten artificial turf surface systems with a range of performance infill materials, infill depths and carpet specifications. Rotations at 10 deg/s produced the lowest peak torques on nine of the ten surfaces. Infill materials with intrinsic viscoelastic properties produced significantly higher peak torques at higher rotational velocities, whereas less elastic infill materials saw no significant increase in peak torque. A mean difference in peak torque of 2.6 Nm was found between the target velocities of the RTT and LRTT. The results support the synchronisation of target velocities for the RTT and LRTT. During standards testing, trials completed below a particular velocity should be repeated to negate velocity effects on peak torque.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10703925PMC
http://dx.doi.org/10.1038/s41598-023-48134-0DOI Listing

Publication Analysis

Top Keywords

rotational traction
24
peak torque
16
rotational velocity
12
artificial turf
12
traction tester
12
infill materials
12
rotational
11
turf surface
8
surface systems
8
rotational velocities
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!