In laser materials processing, energy losses due to reflection, heat conduction and thermal radiation play an important role. In this publication, we show that with increasing laser intensity, the energy lost within the sample becomes less important for metal perforation processes. We compare the laser-matter interaction of aluminum and steel plates. Material parameters such as density, melting point and especially thermal conductivity differ strongly, leading to much longer perforation times for aluminum in comparison to steel at laser powers of 20 kW. However, this behavior changes at laser powers of more than 80 kW where the perforation times of aluminum become shorter than the corresponding times for steel. By comparing experimental data and simulations, we conclude that thermal conduction is the dominant factor of energy loss at low powers, but is reduced at high laser powers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10703938PMC
http://dx.doi.org/10.1038/s41598-023-48511-9DOI Listing

Publication Analysis

Top Keywords

laser powers
12
perforation times
8
times aluminum
8
laser
6
change dominant
4
dominant material
4
material properties
4
properties laser
4
perforation
4
laser perforation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!