Impaired learning, memory, and extinction in posttraumatic stress disorder: translational meta-analysis of clinical and preclinical studies.

Transl Psychiatry

Department of Translational Neuroscience, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands.

Published: December 2023

Current evidence-based treatments for post-traumatic stress disorder (PTSD) are efficacious in only part of PTSD patients. Therefore, novel neurobiologically informed approaches are urgently needed. Clinical and translational neuroscience point to altered learning and memory processes as key in (models of) PTSD psychopathology. We extended this notion by clarifying at a meta-level (i) the role of information valence, i.e. neutral versus emotional/fearful, and (ii) comparability, as far as applicable, between clinical and preclinical phenotypes. We hypothesized that cross-species, neutral versus emotional/fearful information processing is, respectively, impaired and enhanced in PTSD. This preregistered meta-analysis involved a literature search on PTSD+Learning/Memory+Behavior, performed in PubMed. First, the effect of information valence was estimated with a random-effects meta-regression. The sources of variation were explored with a random forest-based analysis. The analyses included 92 clinical (N = 6732 humans) and 182 preclinical (N = 6834 animals) studies. A general impairment of learning, memory and extinction processes was observed in PTSD patients, regardless of information valence. Impaired neutral learning/memory and fear extinction were also present in animal models of PTSD. Yet, PTSD models enhanced fear/trauma memory in preclinical studies and PTSD impaired emotional memory in patients. Clinical data on fear/trauma memory was limited. Mnemonic phase and valence explained most variation in rodents but not humans. Impaired neutral learning/memory and fear extinction show stable cross-species PTSD phenotypes. These could be targeted for novel PTSD treatments, using information gained from neurobiological animal studies. We argue that apparent cross-species discrepancies in emotional/fearful memory deserve further in-depth study; until then, animal models targeting this phenotype should be applied with utmost care.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10703817PMC
http://dx.doi.org/10.1038/s41398-023-02660-7DOI Listing

Publication Analysis

Top Keywords

learning memory
12
ptsd
10
memory extinction
8
stress disorder
8
clinical preclinical
8
preclinical studies
8
ptsd patients
8
models ptsd
8
neutral versus
8
versus emotional/fearful
8

Similar Publications

Mobile Ad Hoc Networks (MANETs) are increasingly replacing conventional communication systems due to their decentralized and dynamic nature. However, their wireless architecture makes them highly vulnerable to flooding attacks, which can disrupt communication, deplete energy resources, and degrade network performance. This study presents a novel hybrid deep learning approach integrating Convolutional Neural Networks (CNN) with Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) architectures to effectively detect and mitigate flooding attacks in MANETs.

View Article and Find Full Text PDF

Genetics plays a significant role in Multiple Sclerosis (MS), with approximately 12.6% of cases occurring in familial form. While previous studies have demonstrated differences in disease progression and MRI findings between familial and sporadic MS, there has been no comparison of cognitive impairment between them.

View Article and Find Full Text PDF

The RNA-binding properties of Annexins.

J Mol Biol

January 2025

Elettra Sincrotrone Trieste, Italy; The Wohl Institute, King's College London, 5 Cutcombe Rd, SW59RT London, UK. Electronic address:

Annexins are a family of calcium-dependent phospholipid-binding proteins involved in crucial cellular processes such as cell division, calcium signaling, vesicle trafficking, membrane repair, and apoptosis. In addition to these properties, Annexins have also been shown to bind RNA, although this function is not universally recognized. In the attempt to clarify this important issue, we employed an integrated combination of experimental and computational approaches.

View Article and Find Full Text PDF

The subiculum is a main output part of the hippocampal formation and important for learning and memory. According to connection studies, the distal and proximal regions of the subiculum project to the brain regions related to the spatial and emotional memories, respectively. Our previous morphological studies indicated that the ventral subiculum (vSub) consists of two regions, the distal subiculum (Sub1) and the proximal subiculum (Sub2), while the dorsal subiculum (dSub) seemed to comprise only one region (Sub1).

View Article and Find Full Text PDF

The Trail of axonal protein Synthesis: Origins and current functional Landscapes.

Neuroscience

January 2025

Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Av. Italia 3318, Montevideo, CP 11600, Uruguay; Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República, Iguá, Montevideo, 4225, CP 11400, Uruguay. Electronic address:

Local protein synthesis (LPS) in axons is now recognized as a physiological process, participating both in the maintenance of axonal function and diverse plastic phenomena. In the last decades of the 20th century, the existence and function of axonal LPS were topics of significant debate. Very early, axonal LPS was thought not to occur at all and was later accepted to play roles only during development or in response to specific conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!