Background: Lung adenocarcinoma (LUAD) is the most common type of non-small cell lung cancer, and any change of miRNAs expression will affect the degree of target regulation, thus affecting intracellular homeostasis. This study verified that miR-186-5p could inhibit the proliferation, migration and invasion of LUAD cells by regulating PRKAA2.
Methods: Previous investigations found that the expression of miR-186-5p was markedly suppressed in LUAD. Bioinformatics method is used to predict the target protein related to ferroptosis downstream and inquire about its expression level in LUAD and its influence on the survival of patients. Double luciferase verified the binding site of PRKAA2 and miR-186-5p. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot were used to detect the expression of PRKAA2. The effects of miR-186-5p of LUAD cells as well as the mechanism by which miR-186-5p inhibits Fer-1's sensitivity to ferroptosis were confirmed by EdU, Transwell, and scratch assays. The effect of miR-186-5p on the amount of reactive oxygen species (ROS) in LUAD cells was discovered using ROS experiment. Malondialdehyde (MDA) and glutathione (GSH) experiments were used to detect the effects of miR-186-5p and PRKAA2 on ferroptosis index of LUAD cells. The concentration of lipid ROS (L-ROS) in LUAD cells were measured using the L-ROS tests to determine the effects of miR-186-5p and PRKAA2.
Results: The expression of PRKAA2 is up-regulated, and a high level of PRKAA2 expression was associated with a poor prognosis for patients with LUAD. Overexpression of miR-186-5p decreased the gene and protein expression of PRKAA2. By promoting ferroptosis, miR-186-5p overexpression prevented lung cancer cells from proliferating, invading, and migrating. ROS could be produced in higher amounts in LUAD cells due to miR-186-5p. Overexpression of miR-186-5p and knockdown PRKAA2 up-regulated MDA content and reduced GSH content in LUAD cells, respectively. miR-186-5p could increase the content of L-ROS and promote the ferroptosis sensitivity of LUAD cells by targeting PRKAA2.
Conclusions: miR-186-5p promotes ferroptosis of LUAD cells through targeted regulation of PRKAA2, thus inhibiting the proliferation, invasion and migration of LUAD.
.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10714044 | PMC |
http://dx.doi.org/10.3779/j.issn.1009-3419.2023.102.39 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!