[The influence of zinc on apoptosis and cell proliferation in palatal shelves during the fusion phase in mice and identification of a special protein family based on gene expression in cleft palate].

Zhonghua Kou Qiang Yi Xue Za Zhi

Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Zunyi Medical University, Zunyi 563000, China.

Published: December 2023

To investigate the effect of the trace element zinc (Zn) on apoptosis and cell proliferation in palate shelvesduring the fusion phase, and to screen candidate genes of the Zn-finger special protein (Sp) family that were differentially expressed between the cleft palate and the normal palate to explore the mechanism of Zn in the development of cleft palate. Zn-rich, normal-Zn, low-Zn, and Zn-deficient diets were fed to female mice and, for the resultant fetuses, paraffin slices of their heads were made at embryonicdays 14.5 and 16.5. Using terminaldeoxynucleotidyltransferase-mediated dUTP nick-end labeling, the number of apoptotic cells in the palatal shelves was counted, and cell proliferation activity was detected using proliferating cell nuclear antigen staining. Total RNA from the palatal shelves of fetal mice was extracted from the Zn-rich diet, normal Zn-diet, and Zn-deficient-diet groups. We used microarray analysis to examine the expression of genes to identify intergroup differential gene expression and polymerase chain reaction tests to validate the results. At ED14.5, the incidence of cleft palate in the regular zinc group, zinc rich group, low zinc group, and zinc deficient group was 8% (3/36), 2% (1/39), 29% (12/41), and 39% (15/38), respectively. The HE staining results at ED14.5 showed that both the left and right palatal processes in the zinc group had been lifted up and were in contact and connected with each other. In the zinc deficiency group, the left and right palatine processes remained vertically downwards on both sides of the tongue, ultimately forming cleft palate; In the low zinc group, the left and right palatine processes were raised but not in contact, ultimately resulting in cleft palate. There is no significant difference between the zinc rich group and the regular zinc group. At ED14.5, the positive rates of proliferative cells in the palatal process of fetal mice in the regular zinc group (80.29% ± 7.39%) and the zinc rich group (87.69% ± 6.62%) were significantly higher than those in the zinc deficient group (56.05% ± 16.13%) and the low zinc group (56.22% ± 9.61%) (=4.32, <0.05). The apoptosis index of fetal rat palatal process cells in the zinc deficient group (38.80% ± 3.10%) and the low zinc group (28.80% ± 6.19%) were significantly higher than those in the regular zinc group (16.80% ± 1.82%) (=19.35, <0.001; =5.81, <0.001). There were 663 differentially expressed genes in the zinc rich group and the zinc deficient group, with 513 up-regulated genes and 150 down-regulated genes, among which Sp5 was found to be located. The real time PCR results showed that compared with the regular zinc group (2.22 ± 0.36), the expression level of Sp5mRNA in the palatal process tissue of the zinc deficient group (1.23 ± 0.38) significantly increased (<0.05), while the zinc rich group (3.68 ± 0.90) significantly decreased (<0.05). Trace element Zn content was found to be closely related to the occurrence of cleft palate in mice offspring, with a lack of Zn leading to cleft palate.

Download full-text PDF

Source
http://dx.doi.org/10.3760/cma.j.cn112144-20230730-00050DOI Listing

Publication Analysis

Top Keywords

zinc group
28
cleft palate
20
zinc
15
group
13
cell proliferation
12
palatal shelves
12
regular zinc
12
zinc rich
12
rich group
12
low zinc
12

Similar Publications

Cadmium Pollution Deteriorates the Muscle Quality of Labeo rohita by Altering Its Nutrients and Intestinal Microbiota Diversity.

Biol Trace Elem Res

January 2025

Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, College of Agronomy and Life Sciences, Kunming University, Kunming, 650214, China.

The detrimental effects of cadmium (Cd), a hazardous heavy metal, on fish have triggered global concerns. While the ecotoxicity of Cd on fish has been investigated, the impact of Cd on muscle quality and its correlation with the gut microbiota in fish remains scarce. To comprehensively uncover Cd effects based on preliminary muscle Cd deposition, relevant studies, and ecological Cd pollution data, we exposed Labeo rohita to Cd under concentrations of 0.

View Article and Find Full Text PDF

The utilization of cyanobacteria toxin-producing blooms for metal ions adsorption has garnered significant attention over the last decade. This study investigates the efficacy of dead cells from Microcystis aeruginosa blooms, collected from agricultural drainage water reservoir, in removing of cadmium, lead, and zinc ions from aqueous solutions, and simultaneously addressing the mitigation of toxin-producing M. aeruginosa bloom.

View Article and Find Full Text PDF

Introduction: Chronic inflammation leading to implant failure present major challenges in orthopedics, dentistry, and reconstructive surgery. Titanium alloys, while widely used, often provoke inflammatory complications. Zinc-doped calcium phosphate (CaP) coatings offer potential to enhance implant integration by improving corrosion resistance, bioactivity, and immunocompatibility.

View Article and Find Full Text PDF

Organic compounds present promising options for sustainable zinc battery electrodes. Nevertheless, the electrochemical properties of current organic electrodes still lag behind those of their inorganic counterparts. In this study, nitro groups were incorporated into pyrene-4, 5, 9, 10-tetraone (PTO), resulting in an elevated discharge voltage due to their strong electron-withdrawing capabilities.

View Article and Find Full Text PDF

The detection of lead ions (Pb) is crucial due to its harmful effects on health and the environment. In this article, what we believe to be a novel dielectric-metal hybrid structure localized surface plasmon resonance (LSPR) sensor for ultra-trace detection of Pb is proposed, featuring a zinc sulfide layer, silver nanodisks (Ag-disks), and graphene oxide (GO) covering the Ag-disks. The sensor works by detecting the variation of gold nanoparticles (AuNPs) on its surface when Pb cleaves a substrate strand linked to a DNAzyme, causing the AuNPs modified on the substrate strand to disperse.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!