Leishmaniasis is a group of vector-borne diseases caused by intracellular protozoan parasites belonging to the genus Leishmania. Leishmania parasites can employ different and numerous sophisticated strategies, including modulating host proteins, cell signaling, and cell responses by parasite proteins, to change the infected host conditions to favor the parasite persistence and induce pathogenesis. In this sense, protein disulfide isomerases (PDIs) have been described as crucial proteins that can be modulated during leishmaniasis and affect the pathogenesis process. The effect of modulated PDIs can be investigated in both aspects, parasite PDIs and infected host cell PDIs, during infection. The information concerning PDIs is not sufficient in parasitology; however, this study aimed to provide data regarding the biological functions of such crucial proteins in parasites with a focus on Leishmania spp. and their relevant effects on the pathogenesis process. Although there are no clinical trial vaccines and therapeutic approaches, highlighting this information might be fruitful for the development of novel strategies based on PDIs for the management of parasitic diseases, especially leishmaniasis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/femspd/ftad032 | DOI Listing |
Alzheimers Dement
December 2024
Delaware State University, Dover, DE, USA.
Background: Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that is characterized by upper and lower motor neuron death that leads to paralysis with the average survival being 3-5 years after diagnosis. The major pathological protein in ALS is TDP-43. TDP-43 becomes hyperphosphorylated and forms inclusions mainly in the cytoplasm.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China; Zhenhai Institute of Mass Spectrometry, Ningbo 315211, China. Electronic address:
N-glycosylation is crucial in the process of wheat yellow mosaic virus (WYMV) infection, but changes in site-specific N-glycosylation of proteins during WYMV infection have not been well studied. In this study, we employed an intact glycopeptide approach to analyze mock- and WYMV-infected wheat plants. We found that most glycoproteins have N-glycans containing paucimannose or complex/hybrid chains.
View Article and Find Full Text PDFJ Transl Med
December 2024
Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, China.
Background: Pancreatic cancer (PC) is a lethal malignancy characterized by poor prognosis and high mortality. We found the highly expressed RNA-binding motif protein 47 (RBM47) in PC progression. The RBM47 expression was negatively correlated with natural killer (NK) cell infiltrate in PC.
View Article and Find Full Text PDFAntibodies (Basel)
December 2024
Department of Pharmacology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA.
Background/objectives: Anterior Gradient-2 (AGR2/PDIA17) is a member of the protein disulfide isomerase (PDI) family of oxidoreductases. AGR2 is up-regulated in several solid tumors, including pancreatic ductal adenocarcinoma (PDAC). Given the dire need for new therapeutic options for PDAC patients, we investigated the expression and function of AGR2 in PDAC and developed a novel series of affinity-matured AGR2-specific single-chain variable fragments (scFvs) and monoclonal antibodies.
View Article and Find Full Text PDFBMJ Open Ophthalmol
December 2024
Ophthalmology, National Yang Ming Chiao Tung University - Yangming Campus, Taipei, Taiwan
Aim: There remain limited therapies to treat thyroid eye disease (TED) orbital fibrosis, highlighting the urgency to develop novel targets. Transforming growth factor-β1 (TGF-β1)-induced myofibroblast transdifferentiation from orbital fibroblasts are important pathogenetic factor of TED. Endoplasmic reticulum (ER) stress may play a role in TED pathogenesis since it has been linked to liver, kidney, heart and lung fibrotic remodelling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!