Bioinspired nanoplatforms for human-machine interfaces: Recent progress in materials and device applications.

Biotechnol Adv

Dept. of Electronic Materials Engineering, Kwangwoon University, Seoul 01897, South Korea. Electronic address:

Published: January 2024

The panoramic characteristics of human-machine interfaces (HMIs) have prompted the needs to update the biotechnology community with the recent trends, developments, and future research direction toward next-generation bioelectronics. Bioinspired materials are promising for integrating various bioelectronic devices to realize HMIs. With the advancement of scientific biotechnology, state-of-the-art bioelectronic applications have been extensively investigated to improve the quality of life by developing and integrating bioinspired nanoplatforms in HMIs. This review highlights recent trends and developments in the field of biotechnology based on bioinspired nanoplatforms by demonstrating recently explored materials and cutting-edge device applications. Section 1 introduces the recent trends and developments of bioinspired nanomaterials for HMIs. Section 2 reviews various flexible, wearable, biocompatible, and biodegradable nanoplatforms for bioinspired applications. Section 3 furnishes recently explored substrates as carriers for advanced nanomaterials in developing HMIs. Section 4 addresses recently invented biomimetic neuroelectronic, nanointerfaces, biointerfaces, and nano/microfluidic wearable bioelectronic devices for various HMI applications, such as healthcare, biopotential monitoring, and body fluid monitoring. Section 5 outlines designing and engineering of bioinspired sensors for HMIs. Finally, the challenges and opportunities for next-generation bioinspired nanoplatforms in extending the potential on HMIs are discussed for a near-future scenario. We believe this review can stimulate the integration of bioinspired nanoplatforms into the HMIs in addition to wearable electronic skin and health-monitoring devices while addressing prevailing and future healthcare and material-related problems in biotechnologies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biotechadv.2023.108297DOI Listing

Publication Analysis

Top Keywords

bioinspired nanoplatforms
20
trends developments
12
bioinspired
9
human-machine interfaces
8
device applications
8
hmis
8
bioelectronic devices
8
nanoplatforms hmis
8
applications
5
nanoplatforms
5

Similar Publications

The increasing occurrence of infections caused by multidrug-resistant (MDR) bacteria drives the need for new antibacterial drugs. Due to the current lack of antibiotic discovery and development, new strategies to fight MDR bacteria are urgently needed. Efforts to develop new antibiotic adjuvants to increase the effectiveness of existing antibiotics and design delivery systems are essential to address this issue.

View Article and Find Full Text PDF

Nanotechnology-based delivery systems have brought a paradigm shift in the management of cancer. However, the main obstacles to nanocarrier-based delivery are their limited circulation duration, excessive immune clearance, inefficiency in interacting effectively in a biological context and overcoming biological barriers. This demands effective engineering of nanocarriers to achieve maximum efficacy.

View Article and Find Full Text PDF

Reperfusion injury represents a significant impediment to recovery after recanalization in an ischemic stroke and can be alleviated by neuroprotectants. However, inadequate drug delivery to ischemic lesions impairs the therapeutic effects of neuroprotectants. To address this issue, an ischemic microenvironment-targeted bioinspired lipoprotein system encapsulating lipoic acid (LA@PHDL) is herein designed to sequentially penetrate ischemic lesions and be readily taken up by neurons and microglia.

View Article and Find Full Text PDF

A bioinspired doxorubicin-carried albumin Nanocage against aggressive Cancer via systemic targeting of tumor and lymph node metastasis.

J Control Release

August 2024

Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China; State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China. Electronic address:

Article Synopsis
  • Cancer metastasis and recurrence present significant challenges in treating aggressive cancers, necessitating effective chemotherapy, especially after surgery.
  • The development of doxorubicin-carried albumin nanocages (Dox-AlbCages) offers a targeted approach to enhance drug delivery and reduce side effects by utilizing serum albumin's transport properties.
  • Dox-AlbCages demonstrated effectiveness in inhibiting tumor growth and metastasis in breast cancer models while showing fewer side effects compared to traditional doxorubicin treatments.
View Article and Find Full Text PDF

Noninflammatory apoptosis is transformed into inflammatory pyroptosis by activating caspase-3 to lyse gasdermin E (GSDME), and this process can be used as an effective therapeutic strategy. Thus, a selective and powerful inducer of activated caspase-3 plays a vital role in pyroptosis-based cancer therapy. Herein, a human cell membrane vesicle-based nanoplatform (HCNP) is designed for photodynamic therapy (PDT).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!