A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

NPC1-like phenotype, with intracellular cholesterol accumulation and altered mTORC1 signaling in models of Parkinson's disease. | LitMetric

NPC1-like phenotype, with intracellular cholesterol accumulation and altered mTORC1 signaling in models of Parkinson's disease.

Biochim Biophys Acta Mol Basis Dis

Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal; Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Portugal. Electronic address:

Published: February 2024

Disruption of brain cholesterol homeostasis has been implicated in neurodegeneration. Nevertheless, the role of cholesterol in Parkinson's Disease (PD) remains unclear. We have used N2a mouse neuroblastoma cells and primary cultures of mouse neurons and 1-methyl-4-phenylpyridinium (MPP), a known mitochondrial complex I inhibitor and the toxic metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), known to trigger a cascade of events associated with PD neuropathological features. Simultaneously, we utilized other mitochondrial toxins, including antimycin A, oligomycin, and carbonyl cyanide chlorophenylhydrazone. MPP treatment resulted in elevated levels of total cholesterol and in a Niemann Pick type C1 (NPC1)-like phenotype characterized by accumulation of cholesterol in lysosomes. Interestingly, NPC1 mRNA levels were specifically reduced by MPP. The decrease in NPC1 levels was also seen in midbrain and striatum from MPTP-treated mice and in primary cultures of neurons treated with MPP. Together with the MPP-dependent increase in intracellular cholesterol levels in N2a cells, we observed an increase in 5' adenosine monophosphate-activated protein kinase (AMPK) phosphorylation and a concomitant increase in the phosphorylated levels of mammalian target of rapamycin (mTOR). NPC1 knockout delayed cell death induced by acute mitochondrial damage, suggesting that transient cholesterol accumulation in lysosomes could be a protective mechanism against MPTP/MPP insult. Interestingly, we observed a negative correlation between NPC1 protein levels and disease stage, in human PD brain samples. In summary, MPP decreases NPC1 levels, elevates lysosomal cholesterol accumulation and alters mTOR signaling, adding to the existing notion that PD may rise from alterations in mitochondrial-lysosomal communication.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbadis.2023.166980DOI Listing

Publication Analysis

Top Keywords

cholesterol accumulation
12
npc1-like phenotype
8
cholesterol
8
intracellular cholesterol
8
parkinson's disease
8
primary cultures
8
npc1 levels
8
levels
7
mpp
5
npc1
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!