The detection of complex interactions between single nucleotide polymorphisms (SNPs) plays a vital role in genome-wide association analysis (GWAS). The multi-objective evolutionary algorithm is a promising technique for SNP-SNP interaction detection. However, as the scale of SNP data further increases, the exponentially growing search space gradually becomes the dominant factor, causing evolutionary algorithm (EA)-based approaches to fall into local optima. In addition, multi-objective genetic operations consume significant amounts of time and computational resources. To this end, this study proposes a distributed multi-objective evolutionary framework (DM-EF) to identify SNP-SNP interactions on large-scale datasets. DM-EF first partitions the entire search space into several subspaces based on a space-partitioning strategy, which is nondestructive because it guarantees that each feasible solution is assigned to a specific subspace. Thereafter, each subspace is optimized using a multi-objective EA optimizer, and all subspaces are optimized in parallel. A decomposition-based multi-objective firework optimizer (DCFWA) with several problem-guided operators was designed. Finally, the final output is selected from the Pareto-optimal solutions in the historical search of each subspace. DM-EF avoids the preference for a single objective function, handles the heavy computational burden, and enhances the diversity of the population to avoid local optima. Notably, DM-EF is load-balanced and scalable because it can flexibly partition the space according to the number of available computational nodes and problem size. Experiments on both artificial and real-world datasets demonstrate that the proposed method significantly improves the search speed and accuracy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ymeth.2023.11.016 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!