Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Control of carbon fiber heteroatom (oxygen and nitrogen) functionalization using electrochemical oxidation is explored in a variety of electrolyte solutions. Results of X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy indicate that most electrolytes in aqueous and anodic conditions are limited to heteroatom surface content of no more than 13 atomic percent (at %) with a majority C-O and/or C-N moieties; the remaining moieties include an oxidative sequence of carbon (alcohol to ketone to carboxylate) and more complex O- and N-containing groups. The pH of the electrolyte solution was found to be crucial in controlling the ratio of the amount of oxygen to nitrogen functionalities, with the increased basicity of solution resulting in higher nitrogen deposition. The oxidative (and/or thermal) decomposition of many electrolytes during electrochemical treatment can have a major impact on functionalization through changes to pH. Oxidation of carbon fiber in some electrolyte solutions showed higher surface concentrations of heteroatoms (25-30 at %) than most electrolytes (13 at %). Mechanisms were proposed to explain how some electrolytes can exceed 13 at % of heteroatom deposition. Specifically, we hypothesized that electrolytes that contain organic ions with chelation capabilities and moieties that produce additional sites of functionalization can overcome that threshold.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.3c02193 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!