Probing the Effectiveness in Stabilizing Lithium Metal Anodes through Functional Additives.

ACS Appl Mater Interfaces

Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States.

Published: December 2023

A variety of electrolyte additives were comprehensively evaluated to understand their relative capability in stabilizing lithium metal anode. Although the Li||Cu test is an effective test to rule out ineffective additives, a reliable assessment of individual additives cannot be obtained just by a single evaluation method. Therefore, various methods must be combined to truly assess the stabilization of a lithium anode. Moreover, it was also discovered that a significant depletion of electrolytes occurred during the end-of-life of the lithium batteries, which partially contributed to the sudden failure of the lithium batteries during cycling. However, the main culprit of the sudden failure was identified as the significant increase in the resistance of the lithium metal anode. When used as an additive, cyclic fluorinated carbonates are the most effective in stabilizing the lithium anode and improving the cycling performance of lithium batteries among all the common additives. Despite its cost-effectiveness, the additive in the conventional electrolyte approach provides insufficient protection for lithium metal due to the complete consumption of the additive materials, which is necessary to repair the solid-electrolyte interphase (SEI). Therefore, it is suggested that a larger ratio (>15 wt %) of the SEI former should be employed to achieve effective lithium stabilization.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.3c14119DOI Listing

Publication Analysis

Top Keywords

lithium metal
16
stabilizing lithium
12
lithium batteries
12
lithium
10
metal anode
8
lithium anode
8
sudden failure
8
additives
5
probing effectiveness
4
effectiveness stabilizing
4

Similar Publications

Controlling the nucleation, growth, and dissolution of Li is crucial for the high cycling stability in rechargeable Li metal batteries. The overpotential for Li nucleation (η) on Li alloys such as Li-Au is generally lower than that on metal current collectors (CCs) with very limited Li solubility like Cu. However, the alloying process of CC and its impact on the Li nucleation kinetics remain unclear.

View Article and Find Full Text PDF

AI-driven identification of a novel malate structure from recycled lithium-ion batteries.

Environ Res

December 2024

INSTM and Chemistry for Technologies Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, via Branze 38, 25123, Brescia, Italy. Electronic address:

The integration of Artificial Intelligence (AI) into the discovery of new materials offers significant potential for advancing sustainable technologies. This paper presents a novel approach leveraging AI-driven methodologies to identify a new malate structure derived from the treatment of spent lithium-ion batteries. By analysing bibliographic data and incorporating domain-specific knowledge, AI facilitated the identification and structure refinement of a new malate complex containing different metals (Ni, Mn, Co, and Cu).

View Article and Find Full Text PDF

Integration of responses to lithium in mussels at different levels of biological complexity.

Chemosphere

December 2024

CBET + Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, Research Centre for Experimental Marine Biology and Biotechnology PiE-UPV/EHU, University of the Basque Country UPV/EHU, Areatza z/g, 48620 Plentzia, Bizkaia, Spain. Electronic address:

The increasing use of lithium (Li) in modern technology and medicine has raised up concerns in the scientific community due to the potential impact of this metal on the aquatic environment. Although several effects have been reported in different organisms, there is still scarce information concerning the mechanisms and chronic effects of Li toxicity in marine life. Our main objective is to determine biological effects of sub-lethal concentrations in Mytilus galloprovincialis at different biological organization levels using the biomarker approach.

View Article and Find Full Text PDF

Tuning steric hindrance of cyclic ether electrolytes enables high-voltage lithium metal batteries.

J Colloid Interface Sci

December 2024

School of Materials Science and Engineering, Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials of Ministry of Education, Anhui University of Technology, Maanshan 243002, China; Key Laboratory of Efficient Conversion and Solid-state Storage of Hydrogen & Electricity of Anhui Province, Maanshan 243002, China. Electronic address:

Ether-based electrolytes are known for their high stability with lithium metal anodes (LMAs), but they often exhibit poor high-voltage stability. Structural optimization of ether-based solvent molecules has been proven to effectively broaden the electrochemical window of these electrolytes, yet the optimization rules within cyclic ethers remain unclear. Herein, we investigate the impact of methyl substitution positions on the molecular properties of 1,3-dioxolane (DOL), a commonly used cyclic ether.

View Article and Find Full Text PDF

The formation and growth of lithium dendrites is an ever-present and urgent problem in lithium-ion batteries (LIBs). At the same time, the low melting point of commercial polyolefin separators may lead to safety issues during application. On this basis, in this work, poly (m-phenylene isophthalamide) (PMIA)/Zr-based metal-organic framework (NH-UiO-66) composite separator was prepared by non-solvent induced phase separation (NIPS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!