Supramolecular Aggregation of Carbon Nanodots.

Nano Lett

Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China.

Published: December 2023

Supramolecular aggregation has provided the archetype concept to understand the variants in an emerging systems property. Herein, we have achieved the supramolecular assembly of carbon nanodots (CDs) for the first time and employ supramolecular aggregation to understand their alteration in photophysical properties. In detail, we have employed the CDs as a block to construct the supramolecular assembly of aggregates in the CDs' antisolvent of ethanol. The CD-based aggregates exhibit complex and organized morphologies with another long-wavelength excitation-dependent emission band. The experimental results and density functional theoretical calculations reveal that the supramolecular assembly of CDs can decrease the energy gap between the ground and excited states, contributing to the new long-wavelength excitation-dependent emission. The supramolecular aggregation can be employed as one universal strategy to manipulate and understand the luminescence of CDs. These findings cast new light to build the emerging systems and understand the light emission of CDs through supramolecular chemistry.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.3c03529DOI Listing

Publication Analysis

Top Keywords

supramolecular aggregation
16
supramolecular assembly
12
supramolecular
8
carbon nanodots
8
emerging systems
8
long-wavelength excitation-dependent
8
excitation-dependent emission
8
cds
5
aggregation carbon
4
nanodots supramolecular
4

Similar Publications

Chirality Interplay of Peptide and Saccharide on Glycopeptide Self-Assembly.

Nano Lett

January 2025

Zhejiang Engineering Research Center for Tissue Repair Materials and Wenzhou Key Laboratory of Biomaterials and Engineering and Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China.

Saccharides and peptides with markedly disparate stereochemical features serve as pivotal chiral molecular partners in living systems. The importance of glycosylation in influencing glycopeptide self-assembly has been recognized. However, how different chiral combinations of saccharides and peptides influence the macroscopic hydrogel mechanics, fiber nanomechanics, asymmetric molecular packing, and thermodynamic changes during glycopeptide self-assembly remains unknown.

View Article and Find Full Text PDF

Graphene is a single-layered sp-hybridized carbon allotrope, which is impermeable to all atomic entities other than hydrogen. The introduction of defects allows selective gas permeation; efforts have been made to control the size of these defects for higher selectivity. Permeation of entities other than gases, such as ions, is of fundamental scientific interest because of its potential application in desalination, detection and purification.

View Article and Find Full Text PDF

Development of a StIW111C-based bioresponsive pore-forming conjugate for permeabilizing the endosomal membrane.

Int J Biol Macromol

January 2025

Center for Protein Studies, Faculty of Biology, University of Havana (UH), 25(th) Street, corner to J Street. Square of Revolution, Havana 10400. Cuba; NanoCancer, Molecular Immunology Center (CIM), 216 Street, corner to 15 Street, Playa, Havana 11600, Cuba. Electronic address:

Gene expression manipulation is pivotal in therapeutic approaches for various diseases. Non-viral delivery systems present a safer alternative to viral vectors, with reduced immunogenicity and toxicity. However, their effectiveness in promoting endosomal escape, a crucial step in gene transfer, remains limited.

View Article and Find Full Text PDF

Block copolymers (BCPs) can form nanoparticles having different morphologies that can be used as photonic nanocrystals and are a platform for drug delivery, sensors, and catalysis. In particular, BCP nanoparticles having disk-like shape have been recently discovered. Such nanodisks can be used as the next-generation antitumor drug delivery carriers; however, the applicability of the existing nanodisks is limited due to their poor or unknown ability to respond to external stimuli.

View Article and Find Full Text PDF

Chiral alkynyl Au(I) complexes: Enhancing chiroptical amplification of circularly polarized luminescence through supramolecular helices.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, PR China. Electronic address:

The construction of helical structures through self-assembly and the exploration of their formation mechanisms not only amplify chiroptical properties but also provide profound insights into the structures and functions of natural helices. In this study, we developed a chiral Au(I) system based on BINAP and alkynyl ligands. The modification of the length or number of alkyl chains at the terminal positions of the alkynyl ligands significantly impacted the self-assembly behavior of the complexes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!