Objective: Human error estimating food intake is a major source of bias in nutrition research. Artificial intelligence (AI) methods may reduce bias, but the overall accuracy of AI estimates is unknown. This study was a systematic review of peer-reviewed journal articles comparing fully automated AI-based (e.g. deep learning) methods of dietary assessment from digital images to human assessors and ground truth (e.g. doubly labelled water).
Materials And Methods: Literature was searched through May 2023 in four electronic databases plus reference mining. Eligible articles reported AI estimated volume, energy, or nutrients. Independent investigators screened articles and extracted data. Potential sources of bias were documented in absence of an applicable risk of bias assessment tool.
Results: Database and hand searches identified 14,059 unique publications; fifty-two papers (studies) published from 2010 to 2023 were retained. For food detection and classification, 79% of papers used a convolutional neural network. Common ground truth sources were calculation using nutrient tables (51%) and weighed food (27%). Included papers varied widely in food image databases and results reported, so meta-analytic synthesis could not be conducted. Relative errors were extracted or calculated from 69% of papers. Average overall relative errors (AI vs. ground truth) ranged from 0.10% to 38.3% for calories and 0.09% to 33% for volume, suggesting similar performance. Ranges of relative error were lower when images had single/simple foods.
Conclusions: Relative errors for volume and calorie estimations suggest that AI methods align with - and have the potential to exceed - accuracy of human estimations. However, variability in food image databases and results reported prevented meta-analytic synthesis. The field can advance by testing AI architectures on a limited number of large-scale food image and nutrition databases that the field determines to be adequate for training and testing and by reporting accuracy of at least absolute and relative error for volume or calorie estimations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10836267 | PMC |
http://dx.doi.org/10.1080/07853890.2023.2273497 | DOI Listing |
Adv Sci (Weinh)
December 2024
Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
Digital PCR (dPCR) has transformed nucleic acid diagnostics by enabling the absolute quantification of rare mutations and target sequences. However, traditional dPCR detection methods, such as those involving flow cytometry and fluorescence imaging, may face challenges due to high costs, complexity, limited accuracy, and slow processing speeds. In this study, SAM-dPCR is introduced, a training-free open-source bioanalysis paradigm that offers swift and precise absolute quantification of biological samples.
View Article and Find Full Text PDFNat Comput Sci
December 2024
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
Machine learning plays an important role in quantum chemistry, providing fast-to-evaluate predictive models for various properties of molecules; however, most existing machine learning models for molecular electronic properties use density functional theory (DFT) databases as ground truth in training, and their prediction accuracy cannot surpass that of DFT. In this work we developed a unified machine learning method for electronic structures of organic molecules using the gold-standard CCSD(T) calculations as training data. Tested on hydrocarbon molecules, our model outperforms DFT with several widely used hybrid and double-hybrid functionals in terms of both computational cost and prediction accuracy of various quantum chemical properties.
View Article and Find Full Text PDFSci Rep
December 2024
Institute for Systems and Computer Engineering Technology and Science (INESC-TEC), Porto, 4200-465, Portugal.
An automatic system for pathology classification in chest X-ray scans needs more than predictive performance, since providing explanations is deemed essential for fostering end-user trust, improving decision-making, and regulatory compliance. CLARE-XR is a novel methodology that, when presented with an X-ray image, identifies the associated pathologies and provides explanations based on the presentation of similar cases. The diagnosis is achieved using a regression model that maps an image into a 2D latent space containing the reference coordinates of all findings.
View Article and Find Full Text PDFTomography
December 2024
Clinic for Radiology and Nuclear Medicine, University Hospital, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
Background: Medical imagesegmentation is an essential step in both clinical and research applications, and automated segmentation models-such as TotalSegmentator-have become ubiquitous. However, robust methods for validating the accuracy of these models remain limited, and manual inspection is often necessary before the segmentation masks produced by these models can be used.
Methods: To address this gap, we have developed a novel validation framework for segmentation models, leveraging data augmentation to assess model consistency.
Tomography
December 2024
Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
This research introduces BAE-ViT, a specialized vision transformer model developed for bone age estimation (BAE). This model is designed to efficiently merge image and sex data, a capability not present in traditional convolutional neural networks (CNNs). BAE-ViT employs a novel data fusion method to facilitate detailed interactions between visual and non-visual data by tokenizing non-visual information and concatenating all tokens (visual or non-visual) as the input to the model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!