Catalysts that distinguish between electronically distinct carbon-hydrogen (C-H) bonds without relying on steric effects or directing groups are challenging to design. In this work, cobalt precatalysts supported by -alkyl-imidazole-substituted pyridine dicarbene (ACNC) pincer ligands are described that enable undirected, remote borylation of fluoroaromatics and expansion of scope to include electron-rich arenes, pyridines, and tri- and difluoromethoxylated arenes, thereby addressing one of the major limitations of first-row transition metal C-H functionalization catalysts. Mechanistic studies established a kinetic preference for C-H bond activation at the -position despite cobalt-aryl complexes resulting from C-H activation being thermodynamically preferred. Switchable site selectivity in C-H borylation as a function of the boron reagent was thereby preliminarily demonstrated using a single precatalyst.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10898344PMC
http://dx.doi.org/10.1126/science.adj6527DOI Listing

Publication Analysis

Top Keywords

c-h
5
kinetic thermodynamic
4
thermodynamic control
4
control csp-h
4
csp-h activation
4
activation enables
4
enables site-selective
4
site-selective borylation
4
borylation catalysts
4
catalysts distinguish
4

Similar Publications

Endophytes from medicinal plants are potential biocontrol agents against Fusarium oxysporum f. sp. cubense (Foc), which is the causative fungus of banana wilt disease.

View Article and Find Full Text PDF

Genetic factors shaping the plasma lipidome and the relations to cardiometabolic risk in children and adolescents.

EBioMedicine

January 2025

Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark. Electronic address:

Background: Lipid species are emerging as biomarkers for cardiometabolic risk in both adults and children. The genetic regulation of lipid species and their impact on cardiometabolic risk during early life remain unexplored.

Methods: Using mass spectrometry-based lipidomics, we measured 227 plasma lipid species in 1149 children and adolescents (44.

View Article and Find Full Text PDF

Mechanistic Investigation of the Ce(III) Chloride Photoredox Catalysis System: Understanding the Role of Alcohols as Additives.

J Am Chem Soc

January 2025

P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 S. 34th St., Philadelphia, Pennsylvania 19104, United States.

Photocatalytic C-H activation is an emerging area of research. While cerium chloride photocatalysts have been extensively studied, the role of alcohol additives in these systems remains a subject of ongoing discussion. It was demonstrated that the photocatalyst [NEt][CeCl] () produces •Cl and added alcohols exhibit zero-order kinetics.

View Article and Find Full Text PDF

Intermediate Control: Unlocking Hitherto Unknown Reactivity and Selectivity in N-Conjugated Allenes and Alkynes.

Acc Chem Res

January 2025

Department of Chemistry and Chemistry Institution for Functional Materials, Pusan National University, Busan 46241, Republic of Korea.

ConspectusControlling selectivity through manipulation of reaction intermediates remains one of the most enduring challenges in organic chemistry, providing novel solutions for selective C-C π-bond functionalization. This approach, guided by activation principles, provides an effective method for selective functional group installation, enabling direct synthesis of organic molecules that are inaccessible through conventional pathways. In particular, the selective functionalization of N-conjugated allenes and alkynes has emerged as a promising research focus, driven by advances in controlling reactive intermediates and activation strategies.

View Article and Find Full Text PDF

This systematic study delves into the synthesis and characterization of robust bi-functional aminopropyl-tagged periodic mesoporous organosilica with a high loading of small imidazolium bridges in its framework (PrNH@R-PMO-IL, ∼2 mmol g of IL). The materials proved to be a reliable and enduring support for the immobilization of Ru species, demonstrating strong performance and excellent selectivity in the -bromination of various derivatives of 2-phenylpyridine compounds and other heterocycles, showcasing its effectiveness and robust nature. The synthesized materials were thoroughly characterized to determine their structural properties, such as pore size distribution, loading of organic groups, and surface area, using various analytical techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!