The AGMK1-9T7 cell line has been used to study neoplasia in tissue culture. By passage in cell culture, these cells evolved to become tumorigenic and metastatic in immunodeficient mice at passage 40. Of the 20 x 106 kidney cells originally plated, less than 2% formed the colonies that evolved to create this cell line. These cells could be the progeny of some type of kidney progenitor cells. To characterize these cells, we documented their renal lineage by their expression of PAX-2 and MIOX, detected by indirect immunofluorescence. These cells assessed by flow-cytometry expressed high levels of CD44, CD73, CD105, Sca-1, and GLI1 across all passages tested; these markers have been reported to be expressed by renal progenitor cells. The expression of GLI1 was confirmed by immunofluorescence and western blot analysis. Cells from passages 13 to 23 possessed the ability to differentiate into adipocytes, osteoblasts, and chondrocytes; after passage 23, their ability to form these cell types was lost. These data indicate that the cells that formed the AGMK1-9T7 cell line were GLI1+ perivascular, kidney, progenitor cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10703308PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0293406PLOS

Publication Analysis

Top Keywords

progenitor cells
16
agmk1-9t7 cell
12
cells
11
gli1+ perivascular
8
renal progenitor
8
kidney progenitor
8
cell
6
perivascular renal
4
progenitor
4
cells source
4

Similar Publications

Objectives: In the last two decades, scientists have gained a better understanding of several aspects of pituitary development. The signaling pathways that govern pituitary morphology and development have been identified, and the compensatory relationships among them are now known.

Aims: This paper aims to emphasize the wide variety of relationships between Pituitary Gland and Stem cells in hormone Production and disease prevention.

View Article and Find Full Text PDF

Replicating the structural and functional features of native myocardium, particularly its high-density cellular alignment and efficient electrical connectivity, is essential for engineering functional cardiac tissues. Here, novel electrohydrodynamically printed InterPore microfibrous lattices with anisotropic architectures are introduced to promote high-density cellular alignment and enhanced tissue interconnectivity. The interconnected pores in the microfibrous lattice enable dynamic, cell-mediated remodeling of fibrous hydrogels, resulting in continuous, mechanically stable tissue bundles.

View Article and Find Full Text PDF

T cell-based immunotherapies targeting antigens on tumor cells have shown efficacy as anti-cancer treatments. While neoantigens are created by somatic mutations acquired during tumorigenesis, allogeneic stem cell transplantation as treatment for hematological malignancies exploits minor histocompatibility antigens encoded by genetic differences between patients and donors. Screening methods to predict neoantigens and minor histocompatibility antigens typically consider only conventional antigens created by nonsynonymous mutations or polymorphisms coding for amino acid changes in canonical open reading frames (ORFs).

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR)-T cell therapy represents a breakthrough for the treatment of hematological malignancies. However, to treat solid tumors and certain hematologic cancers, next-generation CAR-T cells require further genetic modifications to overcome some of the current limitations. Improving manufacturing processes to preserve cell health and function of edited T cells is equally critical.

View Article and Find Full Text PDF

Elevated circulating levels of calprotectin (CAL), the S100A8/A9 heterodimer, are biomarkers of severe systemic inflammation. Here, we investigate the effects of CAL on early human hematopoiesis. CAL demonstrates limited impact on gene expression in stem and progenitor cells, in contrast with interleukin-6 (IL6), which promotes the expression of the and genes in hematopoietic progenitors and the generation of monocytes that release CAL.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!