Dynamics has long been recognized to play an important role in heterogeneous catalytic processes. However, until recently, it has been impossible to study their dynamical behavior at industry-relevant temperatures. Using a combination of machine learning potentials and advanced simulation techniques, we investigate the cleavage of the N[Formula: see text] triple bond on the Fe(111) surface. We find that at low temperatures our results agree with the well-established picture. However, if we increase the temperature to reach operando conditions, the surface undergoes a global dynamical change and the step structure of the Fe(111) surface is destabilized. The catalytic sites, traditionally associated with this surface, appear and disappear continuously. Our simulations illuminate the danger of extrapolating low-temperature results to operando conditions and indicate that the catalytic activity can only be inferred from calculations that take dynamics fully into account. More than that, they show that it is the transition to this highly fluctuating interfacial environment that drives the catalytic process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10723053PMC
http://dx.doi.org/10.1073/pnas.2313023120DOI Listing

Publication Analysis

Top Keywords

fe111 surface
8
operando conditions
8
surface
5
role dynamics
4
dynamics heterogeneous
4
heterogeneous catalysis
4
catalysis surface
4
surface diffusivity
4
diffusivity decomposition
4
decomposition fe111
4

Similar Publications

Article Synopsis
  • Exploring how reactions work helps scientists make better chemicals and catalysts!
  • A new method called HDRL-FP uses advanced computer tricks to study reactions more efficiently by analyzing atomic positions!
  • This method showed that two different reaction paths for making ammonia have the same key step and are easier to achieve than previously thought!
View Article and Find Full Text PDF

Noble metals such as gold (Au), zinc (Zn), and iron (Fe) are highly significant in both fundamental and technological contexts owing to their applications in optoelectronics, optical coatings, transparent coatings, photodetectors, light-emitting devices, photovoltaics, nanotechnology, batteries, and thermal barrier coatings. This study presents a comprehensive investigation of the optoelectronic properties of Fe(111) and Au, Zn/Fe(111) materials using density functional theory (DFT) first-principles method with a focus on both materials' spin orientations. The optoelectronic properties were obtained employing the generalized gradient approximation (GGA) and the full-potential linearized augmented plane wave (FP-LAPW) approach, integrating the exchange-correlation function with the Hubbard potential U for improved accuracy.

View Article and Find Full Text PDF

Dynamics has long been recognized to play an important role in heterogeneous catalytic processes. However, until recently, it has been impossible to study their dynamical behavior at industry-relevant temperatures. Using a combination of machine learning potentials and advanced simulation techniques, we investigate the cleavage of the N[Formula: see text] triple bond on the Fe(111) surface.

View Article and Find Full Text PDF

A high sensitivity reactor was developed to study slow reactions, such as ammonia synthesis over low surface area model catalysts at 1 bar and up to 550 °C. The reactor is connected to an ultra-high vacuum system with a transferable sample design, which allows for cleaning, preparation, and spectroscopic characterization of samples before and after the reaction without exposure to any contaminated environment, such as air. A quasi-closed small volume (250 µl) quartz glass reaction cell is integrated through a capillary with a quartz glass sniffer tube connected to a mass spectrometer.

View Article and Find Full Text PDF

Context: The inhibitory effect of asparagine (Asn) and its derivatives on iron (Fe) corrosion was studied by performing density functional theory (DFT) calculations. In this paper, the global and local reactivity descriptors of Asn in the protonated and neutral forms were evaluated. Also, the changes in reactivity were investigated when dipeptides were combined with Asn.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!