This paper presents a multiple-input-multiple-output (MIMO) antenna array with low-profile and flexible characteristics. Multiple microstrip patches are arranged in the E-plane configuration and decoupled by shorted quarter-wavelength stubs. The antenna has a small element spacing of 0.032 λ, where λ is a free-space wavelength at the center frequency. To demonstrate the feasibility of the proposed concept, a 1 × 4 MIMO array prototype is fabricated. The measured results on the fabricated prototype demonstrate that the MIMO antenna has good operation features at 4.8 GHz with a reflection coefficient of less than -10 dB and an isolation of better than 20 dB. Besides, good radiation patterns and broadside gain of around 4.5 dBi are also attained. The antenna also works in the bending mode and has the capability of extending to large-scale MIMO arrays. Such attractive features prove the utility of the proposed antenna in various modern electronic devices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10703271 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0295358 | PLOS |
Sensors (Basel)
January 2025
College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
An eight-element MIMO antenna with a neutralization line was utilized for future 5G mm-wave applications. The MIMO configuration was designed for two ports, four ports and eight ports to validate the desired impedance and radiation characteristics. The measured results in terms of MIMO and scattering parameters correlate well with the simulated one.
View Article and Find Full Text PDFEntropy (Basel)
December 2024
The School of Electric Engineering and Intelligentization, Dongguan University of Technology, Dongguan 523808, China.
In this paper, we propose a random frequency division multiplexing (RFDM) method for multicarrier modulation in mobile time-varying channels. Inspired by compressed sensing (CS) technology which use a sensing matrix (with far fewer rows than columns) to sample and compress the original sparse signal simultaneously, while there are many reconstruction algorithms that can recover the original high-dimensional signal from a small number of measurements at the receiver. The approach choose the classic sensing matrix of CS-Gaussian random matrix to compress the signal.
View Article and Find Full Text PDFNat Commun
January 2025
Institute of Electromagnetic Space, Southeast University, Nanjing, China.
Holographic multiple-input multiple-output (MIMO) method leverages spatial diversity to enhance the performance of wireless communications and is expected to be a key technology enabling for high-speed data services in the forthcoming sixth generation (6G) networks. However, the antenna array commonly used in the traditional massive MIMO cannot meet the requirements of low cost, low complexity and high spatial resolution simultaneously, especially in higher frequency bands. Hence it is important to achieve a feasible hardware platform to support theoretical study of the holographic MIMO communications.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Electronic Engineering, Hanyang University, Seoul, 04763, South Korea.
This paper presents novel MIMO microstrip patch antennas with dimensions of 40 × 80 × 1.6 mm³ incorporating a decoupling and pattern correction structure (DPCS) designed to mitigate mutual coupling and radiation pattern distortion, operating within 3.6-3.
View Article and Find Full Text PDFSci Rep
January 2025
Electrical Engineering Department, King Saud University, 11421, Riyadh, Saudi Arabia.
A multipurpose antenna system that can handle a broad area of frequencies is crucial in the effort to build up widespread 5G Internet-of-Things (IoT) networks. For fifth-generation Internet-of-things applications, this research introduces a new multi-band antenna that can operate in the sub-6 GHz band (2-7 GHz), Ku-band (13-17.5 GHz), and millimeter wave band (25-39 GHz).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!