Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: Multi-site collaboration is essential for overcoming small-sample problems when exploring reproducible biomarkers in MRI studies. However, various scanner-specific factors dramatically reduce the cross-scanner replicability. Moreover, existing harmony methods mostly could not guarantee the improved performance of downstream tasks.
Methods: we proposed a new multi-scanner harmony framework, called 'maximum classifier discrepancy generative adversarial network', or MCD-GAN, for removing scanner effects in the original feature space while preserving substantial biological information for downstream tasks. Specifically, the adversarial generative network was utilized for persisting the structural layout of each sample, and the maximum classifier discrepancy module was introduced for regulating GAN generators by incorporating the downstream tasks.
Results: We compared the MCD-GAN with other state-of-the-art data harmony approaches (e.g., ComBat, CycleGAN) on simulated data and the Adolescent Brain Cognitive Development (ABCD) dataset. Results demonstrate that MCD-GAN outperformed other approaches in improving cross-scanner classification performance while preserving the anatomical layout of the original images.
Significance: To the best of our knowledge, the proposed MCD-GAN is the first generative model which incorporates downstream tasks while harmonizing, and is a promising solution for facilitating cross-site reproducibility in various tasks such as classification and regression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11005005 | PMC |
http://dx.doi.org/10.1109/TBME.2023.3330087 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!