A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Maximum Classifier Discrepancy Generative Adversarial Network for Jointly Harmonizing Scanner Effects and Improving Reproducibility of Downstream Tasks. | LitMetric

Objective: Multi-site collaboration is essential for overcoming small-sample problems when exploring reproducible biomarkers in MRI studies. However, various scanner-specific factors dramatically reduce the cross-scanner replicability. Moreover, existing harmony methods mostly could not guarantee the improved performance of downstream tasks.

Methods: we proposed a new multi-scanner harmony framework, called 'maximum classifier discrepancy generative adversarial network', or MCD-GAN, for removing scanner effects in the original feature space while preserving substantial biological information for downstream tasks. Specifically, the adversarial generative network was utilized for persisting the structural layout of each sample, and the maximum classifier discrepancy module was introduced for regulating GAN generators by incorporating the downstream tasks.

Results: We compared the MCD-GAN with other state-of-the-art data harmony approaches (e.g., ComBat, CycleGAN) on simulated data and the Adolescent Brain Cognitive Development (ABCD) dataset. Results demonstrate that MCD-GAN outperformed other approaches in improving cross-scanner classification performance while preserving the anatomical layout of the original images.

Significance: To the best of our knowledge, the proposed MCD-GAN is the first generative model which incorporates downstream tasks while harmonizing, and is a promising solution for facilitating cross-site reproducibility in various tasks such as classification and regression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11005005PMC
http://dx.doi.org/10.1109/TBME.2023.3330087DOI Listing

Publication Analysis

Top Keywords

classifier discrepancy
12
downstream tasks
12
maximum classifier
8
discrepancy generative
8
generative adversarial
8
scanner effects
8
downstream
5
generative
4
adversarial network
4
network jointly
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!