Imidazolium-Containing Hybrid Organic-Inorganic Materials for the Conversion of CO: Unveiling the Key Role of the Ionic Template.

Inorg Chem

Laboratoire de Chimie des Matériaux Appliqués, Department of Chemistry, Namur Institute of Structured Matter (NISM), University of Namur, 5000 Namur, Belgium.

Published: December 2023

A straightforward synthesis of a series of hybrid organic-inorganic materials (HOIMs) containing imidazolium moieties was achieved. The preparation of the imidazolium acetate precursor was performed in a single-step procedure using the Debus-Radziszewski reaction. The as-synthesized alkoxysilane was employed in combination with tetraethyl orthosilicate to generate an HOIM presenting a high specific surface area. Two different structure-directing agents (SDAs), an anionic (sodium dodecyl sulfate (SDS)) or a cationic (cetyltrimethylammonium bromide) surfactant, were used to investigate the role played by the SDA on the distribution of the imidazolium-based active sites within the silica structure. After the synthesis, the acetate ion was replaced with Cl and Br via a simple acid treatment. This procedure favors also the removal of the surfactant, thus releasing the porosity of the solids. The HOIMs synthesized were fully characterized via low-angle X-ray diffraction, N physisorption, transmission electron microscopy, C and Si MAS NMR, combustion chemical analysis, X-ray photoelectron spectroscopy, and CO physisorption to assess their physicochemical and structural features, as well as the successful incorporation of imidazolium salts. Their catalytic activity in the conversion of CO was tested over different epoxides to produce the corresponding cyclic carbonates. The key role of the SDS (anionic surfactant) as a templating agent was proved. The best material was stable under the selected reaction conditions, reusable over multiple cycles, and active on a series of different epoxides, thus proving its versatility.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.3c02447DOI Listing

Publication Analysis

Top Keywords

hybrid organic-inorganic
8
organic-inorganic materials
8
key role
8
imidazolium-containing hybrid
4
materials conversion
4
conversion unveiling
4
unveiling key
4
role ionic
4
ionic template
4
template straightforward
4

Similar Publications

Nano-TiO as an antimicrobial inorganic material, can stimulate cells to produce reactive oxygen species and exhibit effective biochemical properties; however, phenylpyrazole derivatives, as organic pesticides, are widely used in agriculture and food. To find novel pesticides with environmental friendliness, combined with three-dimensional quantitative structure-activity relationship (3D-QSAR) prediction analysis, three types of alkaloidal phenylpyrazole amine derivatives (PA) were synthesized by a one-pot microwave method. Based on the dye sensitization strategy, four nano-organometallic pesticides (PT) were prepared by organic-inorganic hybridization.

View Article and Find Full Text PDF

Role of A-Site Cation Hydrogen Bonds in Hybrid Organic-Inorganic Perovskites: A Theoretical Insight.

J Phys Chem Lett

January 2025

MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China.

Hybrid organic-inorganic halide perovskites (HOIPs) have garnered a significant amount of attention due to their exceptional photoelectric conversion efficiency. However, they still face considerable challenges in large-scale applications, primarily due to their instability. One key factor influencing this instability is the lattice softness attributed to the A-site cations.

View Article and Find Full Text PDF

Smart luminescent materials have drawn a significant attention owing to their unique optical properties and versatility in sensor applications. These materials, encompassing a broad spectrum of organic, inorganic, and hybrid systems including quantum dots, organic dyes, and metal-organic frameworks (MOFs), offer tunable emission characteristics that can be engineered at the molecular or nanoscale level to respond to specific stimuli, such as temperature, pH, and chemical presence. Recent advancements have been driven by the integration of nanotechnology, which enhances the sensitivity and selectivity of luminescent materials in sensor platforms.

View Article and Find Full Text PDF

Potential-resolved electrochemiluminescent immunoassay based on dual co-reactants regulation.

Biosens Bioelectron

December 2024

Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China. Electronic address:

Multi-signal-based self-calibrating biosensors have become a research focus due to their superior accuracy and sensitivity in recent years. Herein, the potential-resolved differential ECL immunoassay based on dual co-reactants regulation was developed. Meso-tetra(4-carboxyphenyl)porphyrin (TCPP) functionalized zirconium dioxide (ZrO) composites (TCPP-ZrO) was first synthesized using TCPP as the luminophore and ZrO as the enhancer and stabilizer.

View Article and Find Full Text PDF

The structural and electronic changes are investigated in a 3D hybrid perovskite, methylhydrazinium lead chloride (MHyPbCl) from a host/guest perspective as it transitions from a highly polar to less polar phase upon cooling, using first-principles calculations. The two phases vary structurally in the guest (MHy) orientation and the two differently distorted host (lead halide) layers. These findings highlight the critical role of guest reorientation in reducing host distortion at high temperatures, making the former the primary order parameter for the transition, a notable contrast to the case of other hybrid perovskites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!