Epithelial-mesenchymal transition (EMT) is a trans-differentiating and reversible process that leads to dramatic cell phenotypic changes, enabling epithelial cells in acquiring mesenchymal phenotypes and behaviors. EMT plays a crucial role during embryogenesis, and occurs in several para-physiologic and pathological conditions, as during fibrosis or cancer development. EMT displays some hallmarks of critical transitions, as a sudden change in the overall configuration of a system in correspondence of specific tipping point around which a "catastrophic bifurcation" happens. The transition occurs when external conditions breach specific thresholds. This definition helps in highlighting two main aspects: (1) the change involves the overall system, rather than single, discrete components; (2) cues from the microenvironment play an irreplaceable role in triggering the transition. This evidence implies that critical transition should be ascertained focusing the investigation at the system level (rather than investigating only molecular parameters) in a well-defined context, as the transition is strictly dependent on the microenvironment in which it occurs. Therefore, we need a systems biology approach to investigate EMT across the Waddington-like epigenetic landscape wherein the participation of both internal and external cues can be studied to follow the extent and the main characteristics of the phenotypic transition. Herein, we suggest a set of systems parameters (motility, invasiveness) altogether with specific molecular/histological markers to identify those critical observables, which can be integrated into a comprehensive mechanistic model.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-3577-3_13DOI Listing

Publication Analysis

Top Keywords

biology approach
8
epithelial-mesenchymal transition
8
transition emt
8
transition
7
emt
5
system
4
system biology
4
approach investigating
4
investigating epithelial-mesenchymal
4
emt epithelial-mesenchymal
4

Similar Publications

HP1 Promotes the Centromeric Localization of ATRX and Protects Cohesion by Interfering Wapl Activity in Mitosis.

Front Biosci (Landmark Ed)

January 2025

The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University Health Science Center, 410013 Changsha, Hunan, China.

Background: α thalassemia/mental retardation syndrome X-linked (ATRX) serves as a part of the sucrose nonfermenting 2 (SNF2) chromatin-remodeling complex. In interphase, ATRX localizes to pericentromeric heterochromatin, contributing to DNA double-strand break repair, DNA replication, and telomere maintenance. During mitosis, most ATRX proteins are removed from chromosomal arms, leaving a pool near the centromere region in mammalian cells, which is critical for accurate chromosome congression and sister chromatid cohesion protection.

View Article and Find Full Text PDF

The present study aims to better understand the nature of currently circulating GPV strains and their pathological impact on the immune system during natural outbreaks among different duck breeds in Egypt. For this purpose, 99 ducks (25 flocks) of different breeds, aged 14-75 days, were clinically examined, and 75 tissue pools from the thymus, bursa of Fabricius, and spleen were submitted for virus detection and identification. Clinical and postmortem findings were suggestive of GPV infection.

View Article and Find Full Text PDF

De novo synthesis of phage genomes enables flexible genome modification and simplification. This study explores the synthetic genome assembly of phage vB_PaeS_SCUT-S4 (S4), a 42,932 bp headful packaging phage, which encapsidates a terminally redundant, double-stranded DNA genome exceeding unit length. We demonstrate that using the yeast TAR approach, the S4 genome can be assembled and rebooted from a unit-length genome plus a minimal 60 bp terminal redundant sequence.

View Article and Find Full Text PDF

Targeting Brain Drug Delivery with Macromolecules Through Receptor-Mediated Transcytosis.

Pharmaceutics

January 2025

Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Health Sciences & Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China.

Brain diseases pose significant treatment challenges due to the restrictive nature of the blood-brain barrier (BBB). Recent advances in targeting macromolecules offer promising avenues for overcoming these obstacles through receptor-mediated transcytosis (RMT). We summarize the current progress in targeting brain drug delivery with macromolecules for brain diseases.

View Article and Find Full Text PDF

The deposition of monosodium urate (MSU) crystals within joint spaces produces a painful inflammatory condition known as gout, a specific form of arthritis. The condition calls for a combined curative and preventive management model. A new development in the approach to gout is that of NLRP3-targeted biologic agents, such as monoclonal therapies, to provide more accurate treatment by blocking specific pro-inflammatory cytokines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!