Background: We recently demonstrated that diarrhea-predominant irritable bowel syndrome (IBS-D) subjects have higher relative abundance (RA) of hydrogen sulfide (HS)-producing Fusobacterium and Desulfovibrio species, and constipation-predominant IBS (IBS-C) subjects have higher RA of methanogen Methanobrevibacter smithii.

Aims: In this study, we investigate the effects of increased methanogens or HS producers on stool phenotypes in rat models.

Methods: Adult Sprague-Dawley rats were fed high-fat diet (HFD) for 60 days to increase M. smithii levels, then gavaged for 10 days with water (controls) or methanogenesis inhibitors. To increase HS producers, rats were gavaged with F. varium or D. piger. Stool consistency (stool wet weight (SWW)) and gas production were measured. 16S rRNA gene sequencing was performed on stool samples.

Results: In HFD diet-fed rats (N = 30), stool M. smithii levels were increased (P < 0.001) after 52 days, correlating with significantly decreased SWW (P < 0.0001) at 59 days (R = - 0.38, P = 0.037). Small bowel M. smithii levels decreased significantly in lovastatin lactone-treated rats (P < 0.0006), and SWW increased (normalized) in lovastatin hydroxyacid-treated rats (P = 0.0246), vs. controls (N = 10/group). SWW increased significantly in D. piger-gavaged rats (N = 16) on day 10 (P < 0.0001), and in F. varium-gavaged rats (N = 16) at all timepoints, vs. controls, with increased stool HS production. 16S sequencing revealed stool microbiota alterations in rats gavaged with HS producers, with higher relative abundance (RA) of other HS producers, particularly Lachnospiraceae and Bilophila in F. varium-gavaged rats, and Sutterella in D. piger-gavaged rats.

Conclusions: These findings suggest that increased M. smithii levels result in a constipation-like phenotype in a rat model that is partly reversible with methanogenesis inhibitors, whereas gavage with HS producers D. piger or F. varium results in increased colonization with other HS producers and diarrhea-like phenotypes. This supports roles for the increased RA of methanogens and HS producers identified in IBS-C and IBS-D subjects, respectively, in contributing to stool phenotypes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10861391PMC
http://dx.doi.org/10.1007/s10620-023-08197-5DOI Listing

Publication Analysis

Top Keywords

hydrogen sulfide
8
subjects higher
8
smithii levels
8
stool
5
sulfide producers
4
producers drive
4
drive diarrhea-like
4
diarrhea-like phenotype
4
phenotype methane
4
methane producer
4

Similar Publications

A multifunctional nanoplatform integrating multiple therapeutic functions may be an effective strategy to realize satisfactory therapeutic efficacy in the treatment of tumors. However, there is still a certain challenge in integrating multiple therapeutic agents into a single formulation using a simple method due to variations in their properties. In this work, multifunctional CuS-ICG@PDA-FA nanoparticles (CIPF NPs) with excellent ability to produce reactive oxygen species and photothermal conversion performance are fabricated by a simple and gentle method.

View Article and Find Full Text PDF

Medical gases were primarily used for respiratory therapy and anesthesia, which showed promising potential in the cancer therapy. Several physiological and pathological processes were affected by the key gases, such as oxygen, carbon dioxide, nitric oxide, hydrogen sulfide, and carbon monoxide. Oxygen targets shrinking the tumor via hyperbaric oxygen therapy, and once combined with radiation therapy it enhances its effect.

View Article and Find Full Text PDF

Carbon monoxide (CO) is widely recognized as a significant environmental pollutant and is associated with numerous instances of accidental poisoning in humans. However, it also serves a pivotal role as a signaling molecule in plants, exhibiting functions analogous to those of other gaseous signaling molecules, including nitric oxide (NO) and hydrogen sulfide (HS). In plant physiology, CO is synthesized as an integral component of the defense mechanism against oxidative damage, particularly under abiotic stress conditions such as drought, salinity, and exposure to heavy metals.

View Article and Find Full Text PDF

Cystine transporter SLC7A11 regulates sensitivity to unsaturated carbonyl compounds in mouse macrophage cell lines.

J Pharmacol Sci

February 2025

Department of Cellular Pharmacology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Nishi 7, Kita 15, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan; Department of Neuropharmacology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Nishi 7, Kita 15, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan.

Cytotoxic effects of cigarette smoke are thought to be causes of cigarette smoking-related diseases such as respiratory infection, chronic obstructive pulmonary disease, and atherosclerosis. Unsaturated carbonyl compounds are major cytotoxic factors in the gas phase of cigarette smoke. Cell death induced by unsaturated carbonyl compounds in cigarette smoke is PKC-dependent ferroptosis.

View Article and Find Full Text PDF

A dual-mode biosensor for microRNA detection based on DNA tetrahedron-gated nanochannels.

Mikrochim Acta

January 2025

Key Laboratory of Synthetic and Natural Functional Molecule, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, People's Republic of China.

A biosensor based on solid-state nanochannels of anodic aluminum oxide (AAO) membrane for both electrochemical and naked-eye detection of microRNA-31 (MiR-31) is proposed. For this purpose, MoS nanosheets, which possess different adsorption capabilities to single-stranded and double-stranded nucleic acids, are deposited onto the top surface of the AAO membrane. Moreover, multi-functional DNA nanostructure have been designed by linking a G-rich sequence for folding to a G-quadruplex at three vertices and a complementary sequence of MiR-31 at the other one vertex of a DNA tetrahedron.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!