Ultra-high-molecular-weight, water-soluble polyelectrolytes are commonly employed as flocculants for solid-liquid separation via colloidal destabilization, enabling the rapid and efficient removal of particulate matter from wastewater streams. A drive toward more sustainable and less polluting industrial practices, coupled with the desire to reduce freshwater usage and improve closed-loop systems, demands the development of flocculants with ever-higher dewatering dose performance. Herein, the use of trithiocarbonate-mediated reversible addition-fragmentation chain transfer (RAFT) polymerization under either blue LED (λ = 470 nm) or UV (λ = 365 nm) irradiation, known as photoiniferter polymerization, was successfully utilized to generate ultra-high-molecular-weight ( > 1,000,000 g mol) polyelectrolyte copolymer flocculants with narrow molecular weight distributions (/ < 1.2). Cationic and anionic polyelectrolyte flocculants were synthesized containing various monomer compositions of acrylamide (AM), dimethylacrylamide (DMA), 3-(acryloyloxyethyll)trimethylammonium chloride (DMAEAq), 3-(acrylamidopropyl)trimethylammonium chloride (APTAC), sodium acrylate (NaAA), and sodium 2-(acrylamido)-2-methylpropylsulfonate (NaATBS) with high monomer conversion using simple experimental apparatus. The narrow molecular weight distribution cationic polyelectrolytes showed improved flocculation efficiency in the clarification of kaolin suspensions of up to 50% in comparison to a broad polydispersity (/ > 5.0) commercial benchmark with an equivalent number average molecular weight. The improved performance of the narrow-polydispersity copolymers is attributed to the reduction in the content of the lower-molecular-weight polymer chains, which impart lower flocculation performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.3c14483 | DOI Listing |
Microb Cell Fact
January 2025
Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt.
Background: Because the process is cost-effective, microbial pectinase is used in juice clearing. The isolation, immobilization, and characterization of pectinase from Aspergillus nidulans (Eidam) G. Winter (AUMC No.
View Article and Find Full Text PDFJ Cyst Fibros
January 2025
Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA; Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA. Electronic address:
Background: Adult people with cystic fibrosis (PwCF) have a higher risk of end-stage kidney disease than the general population. The nature and mechanism of kidney disease in CF are unknown. This study quantifies urinary kidney injury markers and examines the hypothesis that neutrophil activation and lung infection are associated with early kidney injury in CF.
View Article and Find Full Text PDFChin Med
January 2025
Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
Background: This research aims to explore the anti-obesity potential of Wu-Mei-Wan (WMW), particularly its effects on adipose tissue regulation in obese mice induced by a high-fat diet (HFD). The study focuses on understanding the role of heat shock factor 1 (HSF1) in mediating these effects.
Methods: HFD-induced obese mice were treated with WMW.
Microb Cell Fact
January 2025
Molecular Biology Department, Biotechnology Research Institute, National Research Center, El-Buhouth St. 33, Dokki, P.O.12622, Giza, Egypt.
Background: Actinomycetes are a well-known example of a microbiological origin that may generate a wide variety of chemical structures. As excellent cell factories, these sources are able to manufacture medicines, agrochemicals, and enzymes that are crucial.
Results: In this study, about 34 randomly selected Streptomyces isolates were discovered in soil, sediment, sea water, and other environments.
Nat Cell Biol
January 2025
Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
Outer mitochondrial membrane (OMM) proteins communicate with the cytosol and other organelles, including the endoplasmic reticulum. This communication is important in thermogenic adipocytes to increase the energy expenditure that controls body temperature and weight. However, the regulatory mechanisms of OMM protein insertion are poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!