Aims: Microbial enhanced oil recovery (MEOR) is dedicated to enhancing oil recovery by harnessing microbial metabolic activities and their byproducts within reservoir rocks and fluids. Therefore, the investigation of microbial mobility and their extensive distribution within crude oil is of paramount importance in MEOR. While microscale models have been valuable for studying bacterial strain behavior in reservoirs, they are typically limited to 2D representations of porous media, making them inadequate for simulating actual reservoir conditions. Consequently, there is a critical need for 3D models and dependable visualization methods to observe bacterial transport and metabolism within these complex reservoir environments.
Methods And Results: Bacterial cellulose (bc) is a water-insoluble polysaccharide produced by bacteria that exhibits biocompatibility and biodegradability. It holds significant potential for applications in the field of MEOR as an effective means for selective plugging and spill prevention during oil displacement processes. Conditionally cellulose-producing strain, FY-07-G, with green fluorescent labeling, was engineered for enhanced oil recovery. 3D micro-visualization model was constructed to directly observe the metabolic activities of the target bacterial strain within porous media and to assess the plugging interactions between cellulose and the medium. Additionally, X-ray computed tomography (X-CT) technology was employed for a comprehensive analysis of the transport patterns of the target strain in oil reservoirs with varying permeabilities. The results indicated that FY-07-G, as a microorganism employing biopolymer-based plugging principles to enhance oil recovery, selectively targets and seals regions characterized by lower permeability and smaller pore spaces.
Conclusions: This work provided valuable insights into the transport and metabolic behavior of MEOR strains and tackled the limitation of 2D models in faithfully replicating oil reservoir conditions, offering essential theoretical guidance and insights for the further application of oil-displacing bacterial strains in MEOR processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jambio/lxad281 | DOI Listing |
Molecules
January 2025
Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia.
Sacha inchi ( L.), an oilseed native to the Peruvian rainforest, has garnered attention for its valuable components and its potential applications in the food, pharmaceutical, and nutraceutical industries. Sacha inchi oil is rich in fatty acids, particularly omega-3, omega-6, and omega-9, along with antioxidants such as tocopherols, which collectively contribute to cardiovascular health, antioxidant, anti-inflammatory, antiproliferative, and neuroprotective effects.
View Article and Find Full Text PDFMolecules
December 2024
State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China.
Comp Biochem Physiol A Mol Integr Physiol
January 2025
Developmental Integrative Biology, Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203, United States of America.
Bird nests of coastal or inland breeding birds can temporarily flood during high tides or storms. However, respiratory physiological disruption of such water submersion and implications for post-submergence survival are poorly understood. We hypothesized that respiratory physiological disturbances caused by submersion would be rapidly corrected following return to normal gas exchange across the eggshell, thus explaining survival of nest inundation in the field.
View Article and Find Full Text PDFFood Chem (Oxf)
June 2025
Dept. of Biomedical and Biotechnological Sciences, University of Catania.
In the last few years, many efforts have been devoted to the recovery and valorization of olive oil by-products because of their potentially high biological value. The olive mill wastewater (OMWW), a dark-green brown colored liquid that mainly consists of fruit vegetation water, is particularly exploited in this regard for its great content in phenolic compounds with strong antioxidant properties. In our previous work, we produced different OMWW fractions enriched in hydroxytyrosol- and hydroxytyrosol/oleuropein (i.
View Article and Find Full Text PDFZhonghua Gan Zang Bing Za Zhi
December 2024
Department of Infectious Diseases and Hepatology, Yichun People's Hospital, Yichun336000, China.
To compare the effectiveness and safety profile of tenofovir amibufenamide (TMF) and tenofovir alafenamide (TAF), especially the effects on lipid metabolism in the treatment of chronic hepatitis B. A retrospective study was conducted on the virological response rate, biochemical response rate, renal function indicators, and lipid metabolism status of 159 cases with chronic hepatitis B (72 cases with TMF and 87 cases with TAF) after 48 weeks of antiviral treatment. The effects of the two drugs on lipid metabolism were further explored through cell and animal experiments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!