Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Developing electrolytes combining solid-like instinct stability and liquid-like conducting performance will be satisfactory for efficient and durable Li-ion batteries. Herein lamellar lyotropic liquid crystals (LLCs) demonstrate high-voltage windows, efficient charge transport, and inherent thermal safety as solid-state electrolytes in lithium-ion batteries. Lamellar LLCs are simply prepared by nanosegregation of [CMim][BF] and LiBF/Propylene carbonate (PC) liquid solutions, which induce lamellar assembly of the liquids as dynamic conducting pathways. Broadened liquid conducting pathways will boost the conducting performance of the LLC electrolytes. The lyotropic lamellar nanostructures enable liquid-like ion conductivity of the LLC electrolytes at ambient temperatures, as well as provide solid-like stability for the electrolytes to resist high voltage and flammability overwhelming to LiBF/PC liquid electrolytes. Despite minor consumption of PC solvents (34.5 wt.%), the lamellar electrolytes show energy conversion efficiency comparable to the liquid electrolytes (PC wt. 92.8%) in Li/LiFePO batteries under ambient temperatures even at a 2 C current density, and exhibit attractively robust stability after 200th cyclic charge/discharge even under 60 °C. The work demonstrates LLC electrolytes have great potential to supersede traditional liquid electrolytes for efficient and durable Lithium-ion (Li-ion) batteries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202310186 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!