Adenoviruses are well-known viral vectors that have been previously used in gene therapy and as a vaccine-delivery vehicle for humans and animals. During the COVID-19 pandemic, it gained renewed attention, but at the same time, it raised concerns due to side effects observed with some of the resulting vaccines administered to patients. It has been indicated that these side effects might be attributed to impurities present in the final product. Therefore, constant enhancement of the vaccine purity and further improvement of impurity detection methods are needed. In this work, we showcase an example of industry-relevant adenovirus bioprocess optimization. Our data show the effect of upstream parameters on the bioburden introduced to the downstream process. We provide an example of process optimization using a combination of the PATfix analytical method, ddPCR, infectivity, total DNA, and total protein analyses to optimize cell density, multiplicity of infection, and length of production. Additionally, we provide data illustrating the robustness of the convective interaction media quaternary amine monolithic chromatography step. This anion exchange strategy was shown to remove over 99% of protein and DNA impurities, including those unable to be addressed by tangential flow filtration, while maintaining high adenovirus recoveries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/elps.202300131 | DOI Listing |
Vaccines (Basel)
August 2024
Vaxart Inc., 170 Harbor Way Suite 300, South San Francisco, CA 94080, USA.
Therapeutic vaccination can harness the body's cellular immune system to target and destroy cancerous cells. Several treatment options are available to eliminate pre-cancerous and cancerous lesions caused by human papillomaviruses (HPV), but may not result in a long-term cure. Therapeutic vaccination may offer an effective, durable, and minimally intrusive alternative.
View Article and Find Full Text PDFBiotechnol Bioeng
July 2024
Department of Bioengineering, McGill University, Montreal, Canada.
In the era of Biopharma 4.0, process digitalization fundamentally requires accurate and timely monitoring of critical process parameters (CPPs) and quality attributes. Bioreactor systems are equipped with a variety of sensors to ensure process robustness and product quality.
View Article and Find Full Text PDFVaccines (Basel)
December 2023
Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0G4, Canada.
Newcastle disease (ND) remains a critical disease affecting poultry in sub-Saharan Africa. In some countries, repeated outbreaks have a major impact on local economies and food security. Recently, we developed an adenovirus-vectored vaccine encoding the Fusion protein from an Ethiopian isolate of Newcastle disease virus (NDV).
View Article and Find Full Text PDFElectrophoresis
March 2024
Sartorius BIA Separations, Mirce, Ajdovščina, Slovenia.
Adenoviruses are well-known viral vectors that have been previously used in gene therapy and as a vaccine-delivery vehicle for humans and animals. During the COVID-19 pandemic, it gained renewed attention, but at the same time, it raised concerns due to side effects observed with some of the resulting vaccines administered to patients. It has been indicated that these side effects might be attributed to impurities present in the final product.
View Article and Find Full Text PDFJ Chromatogr A
October 2023
Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695, United States; North Carolina Viral Vector Initiative in Research and Learning, North Carolina State University, Raleigh, NC 27695, United States.
Viral vectors are poised to acquire a prominent position in modern medicine and biotechnology owing to their role as delivery agents for gene therapies, oncolytic agents, vaccine platforms, and a gateway to engineer cell therapies as well as plants and animals for sustainable agriculture. The success of viral vectors will critically depend on the availability of flexible and affordable biomanufacturing strategies that can meet the growing demand by clinics and biotech companies worldwide. In this context, a key role will be played by downstream process technology: while initially adapted from protein purification media, the purification toolbox for viral vectors is currently undergoing a rapid expansion to fit the unique biomolecular characteristics of these products.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!