Causal reasoning is a fundamental cognitive ability that enables individuals to learn about the complex interactions in the world around them. However, the mechanisms that underpin causal reasoning are not well understood. For example, it remains unresolved whether children's causal inferences are best explained by Bayesian inference or associative learning. The two experiments and computational models reported here were designed to examine whether 5- and 6-year-olds will retrospectively reevaluate objects-that is, adjust their beliefs about the causal status of some objects presented at an earlier point in time based on the observed causal status of other objects presented at a later point in time-when asked to reason about 3 and 4 objects and under varying degrees of information processing demands. Additionally, the experiments and models were designed to determine whether children's retrospective reevaluations were best explained by associative learning, Bayesian inference, or some combination of both. The results indicated that participants retrospectively reevaluated causal inferences under minimal information-processing demands (Experiment 1) but failed to do so under greater information processing demands (Experiment 2) and that their performance was better captured by an associative learning mechanism, with less support for descriptions that rely on Bayesian inference. RESEARCH HIGHLIGHTS: Five- and 6-year-old children engage in retrospective reevaluation under minimal information-processing demands (Experiment 1). Five- and 6-year-old children do not engage in retrospective reevaluation under more extensive information-processing demands (Experiment 2). Across both experiments, children's retrospective reevaluations were better explained by a simple associative learning model, with only minimal support for a simple Bayesian model. These data contribute to our understanding of the cognitive mechanisms by which children make causal judgements.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/desc.13464 | DOI Listing |
Sensors (Basel)
January 2025
School of Computer Science, Shaanxi Normal University, Xi'an 710062, China.
Music generation by AI algorithms like Transformer is currently a research hotspot. Existing methods often suffer from issues related to coherence and high computational costs. To address these problems, we propose a novel Transformer-based model that incorporates a gate recurrent unit with root mean square norm restriction (TARREAN).
View Article and Find Full Text PDFJ Exp Psychol Gen
January 2025
Department of Cognitive Psychology, Institute of Psychology, Universitat Hamburg.
While prediction errors (PEs) have long been recognized as critical in associative learning, emerging evidence indicates their significant role in episodic memory formation. This series of four experiments sought to elucidate the cognitive mechanisms underlying the enhancing effects of PEs related to aversive events on memory for surrounding neutral events. Specifically, we aimed to determine whether these PE effects are specific to predictive stimuli preceding the PE or if PEs create a transient window of enhanced, unselective memory formation.
View Article and Find Full Text PDFPsychophysiology
January 2025
Department of Psychology, University of Bonn, Bonn, Germany.
Imaginal exposure is a standard procedure of cognitive behavioral therapy for the treatment of anxiety and panic disorders. It is often used when in vivo exposure is not possible, too stressful for patients, or would be too expensive. The Bio-Informational Theory implies that imaginal exposure is effective because of the perceptual proximity of mental imagery to real events, whereas empirical findings suggest that propositional thought of fear stimuli (i.
View Article and Find Full Text PDFFront Comput Neurosci
January 2025
Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, Republic of Korea.
Memory consolidation refers to the process of converting temporary memories into long-lasting ones. It is widely accepted that new experiences are initially stored in the hippocampus as rapid associative memories, which then undergo a consolidation process to establish more permanent traces in other regions of the brain. Over the past two decades, studies in humans and animals have demonstrated that the hippocampus is crucial not only for memory but also for imagination and future planning, with the CA3 region playing a pivotal role in generating novel activity patterns.
View Article and Find Full Text PDFBMC Neurosci
January 2025
National Brain Research Centre, Manesar, Gurugram, 122052, Haryana, India.
Delta-opioid receptors (δ-ORs) are known to be involved in associative learning and modulating motivational states. We wanted to study if they were also involved in naturally-occurring reinforcement learning behaviors such as vocal learning, using the zebra finch model system. Zebra finches learn to vocalize early in development and song learning in males is affected by factors such as the social environment and internal reward, both of which are modulated by endogenous opioids.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!